
Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

1

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

Lab Exercises wk04 – Debugging Code with NetBeans

Required Reading
None

Instructions – PLEASE READ (notice bold and underlined phrases)

Lab Exercise has three parts:
A. Lab Demo – Watch Demo, reproduce it, show your TA

B. Exercises – No lab exercises. Please work on completing Assignment #2

C. Submission – Nothing to submit this week

1. You are encouraged to work on these lab exercises in teams of two, and
each group must reproduce the demo and show the TA that they have
completed Part A. Team members should alternate turns at the keyboard
typing in the code during Part A.

2. Submission deadline: Friday Jan 29th at 10:30am

3. The exercises are presented in sequence so that you gradually advance
with the material.

4. Before you leave the CSIL labs, make sure that a TA looks at your work
in order to receive your attendance and lab active participation marks.

5. Lab04 Intended learning outcomes

By the completion of the demo, students should be able to use NetBeans to:
 Single step through programs and methods
 Set breakpoints and view program state and internal variables
 Set Command Line parameters through the NetBeans IDE

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

2

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

A. Lab Demo – Presented by TAs, and repeated by Students

Students must observe demo presented by TA, then reproduce it.

Student must have the TA check off demo program completion by end of
tutorial for full marks. Marks will be awarded for attendance but only partial
marks for incomplete work at the discretion of the TA.

Even though students may work in teams, each team member must create a
running project based on the demo for full marks.

Debugging Code with NetBeans

In this Lab04 demo, you will learn how to debug code using NetBeans.
NetBeans is a powerful IDE that allows you to monitor what your program
and methods are doing, how they affect variables and state, and use it to
locate bugs. This is a far more powerful and efficient debugging technique
than adding cout statements throughout your code.

In this Demo, we will be using a C++ program that formats text strings as
either left justified, right justified, or centered. You will need the following
file which is available on the CMPT 135 Course website called:

� Lab04Main.cpp

To get started,

1. Create Project Lab04Justify

Create a project called Lab04Justify and import the source file for
Lab04Main.cpp from the Class website.

 Download Lab04Main.cpp and place it in your Downloads directory, or
some other temporary location.

 Start NetBeans. Make a new project called Lab04Justify.

 Click on 'Source Files' under the Lab04Justify project to reveal main.cpp.
Right-click on it, and select 'Rename', Rename it to Lab04Main.cpp.

 Right click on ‘Lab04Justify’ project in the Package Explorer view and select
‘Properties’ from the menu. Select "C++ Properties" and ensure that the
"C++ Standard" is set to C++11.If it is not already set that way, select it
from the menu on the right hand side of that option.

 From the Ubuntu desktop, open the Filing Cabinet and go to your
Downloads directory. Double click on file Lab04Main.cpp. By default, it will
be opened by GEdit. Click on the window, then press <ctrl-a> to select the
entire file, and <ctrl-c> to copy the entire file to your clipboard.

 Click on your NetBeans window, and double-click on Lab04Main.cpp to
open it in NetBean's main edit window. Click on the window to select it.

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

3

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

Press <ctrl-a><ctrl-v> to over-write the existing file with the contents of
Lab04Main.cpp from your Downloads directory.

 You should now have the contents from your downloaded
Lab04Main.cpp in your Lab04Justify NetBeans project.

 Verify this by clicking on the Green Arrow to "Run Project". Your
program should compile and run. The output should indicate that it is
using default parameters with Width 20 and Justification set to Left.
However, there is a bug in the program and should then report "Error:
No text specified. Exiting...".

 The program is supposed to accept a set of command line parameters
and justify the text according to the displayed Usage statement. If no text
is specified, it is supposed to Left-Justify the default text about the quick
brown fox.

 Instead of using the defaults, it is reporting an error. Your job is to debug
this code and fix it!

2. Open a Debug Perspective

 Up to now, we have been using the NetBeans Run configuration. In this
configuration, we can run and test our program but we cannot set
breakpoints or debug our program very easily.

 The Debug configuration is oriented towards debugging.

 Enter this configuration by either hitting the "Debug Project" button
beside the green "Run" button, or go to the top level menu bar, and select
"Debug Project" from the Debug menu, or simply hit <ctrl-F5>.

 When you enter this mode, nothing much may appear different but it is
using a different configuration. When you enter this mode, it will likely
recompile your code and run it.

 The Output window at the bottom will still contain the output from the
program that just ran but now we will be able to step through the running
program and display variables at different points in the execution. This will
allow us to find the bug that is causing our program to report an error.

3. Executing a Program One Line at a Time

A basic ability of any good IDE is the ability to control the execution of
a program — to be able to stop the program when and where you want
and view its current state. The simplest example of that (from a user
perspective) is line-by-line execution. This is called Single Stepping
through a program,.

a. In the Edit window, scroll through Lab04Main.cpp until you find
main() around line 221. Click on the line number beside where

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

4

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

main() starts and a red square should appear on line 221. This
indicates that you have just set a breakpoint at the start of main.
Do the same thing on the first IF statement after main around line
224. You should have two breakpoints set now.

b. Now when you hit the "Debug Project" button, the program will stop
at the first breakpoint at the start of main(). Because it stopped, there is
no output yet produced. The program is stopped at this breakpoint
waiting for you.

c. Look at the line under main() where Parms is declared. Notice that
there is a green arrow where its line number used to be. This
indicates that this is where the program will resume once you tell it
to continue running.

d. When you are at a break point, you can display the values of any
variables that are in scope, or set more breakpoints, or tell the
debugger to continue until it hits the next breakpoint, or reaches
the end of the program.

e. In bottom window, besides the output window, you will notice there
are three new tabs: the Variables Tab, the Call Stack Tab, and the
Breakpoints Tab. You may also notice that at the very bottom there
is a little orange ball bouncing back and forth: this is telling you
that you are in Debug Mode and that your program is waiting for
you. Go to the Window menu at the top, select Debugging, and you
will see a list of all the various debug windows you can use. We will
stick to these three for now.

f. Click on the Variables window. Notice that the Variables window
shows three variables: parms, argc, argv. At this point in the
program, these are the only variables in scope.

g. This window displays the values of argc and argv which have well
defined values at this point. Parms has not yet been initialized by
our program and so contains uninitialized values.

h. Argc is set to one because only one command line argument was
passed in: the name of the program itself. Argv contains a pointer
to a pointer to the name (because it is an array of pointers to
character arrays - but you do not need to know these details yet!).

i. Click on the Call Stack window. Notice that it only contains one line
containing main() and its two parameters (argc=1, argv=0x7fffff…).
When main() calls ParseCmdParms, it too will appear in this
window along with its parameters. This window can be very useful
for understanding how a function was called when it had a bug.

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

5

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

j. Now click on the Breakpoints window. This contains the set of
breakpoints where you have told your program to stop. At this
point, we have set two: both in Lab04Main.cpp at lines 221 and 224.
Notice that the green arrow is indicated on the first breakpoint.
That is where are program is stopped.

k. Hit the Continue button (or F5 button) to continue execution
until it hits the next breakpoint. Notice that the IF statement on line
224 is now highlighted in green and the green arrow in the
Breakpoints menu has moved to the second break point.

l. If we hit Continue again, the program would run to the end because
there are no more breakpoints. But breakpoints are not the only
way to debug. We can also single step through the program
execution.

m. Let's single step into the ParseCmdParms routine by hitting the

StepInto button (or F7 button). This tells the debugger to
execute the next step in the program. If that step is a procedure call
or function call, it will step into the routine and stop, waiting for the
next command. You may notice that before it enters
ParseCmdParms, it first shows the declaration of struct Parms
which it needs as a parameter for the call to ParseCmdParms. Hit
the StepInto button a several times until you reach the switch
statement.

n. Now look at the Call Stack window once again. It still contains
main(), but now ParseCmdParms has been pushed onto the stack
along with its parameters and their values.

o. Click on the Variables window. Now you can view all the variables
that are in scope within ParseCmdParms. Argc is still one, Argc is
unchanged, but parms has not been initialized thanks to the three
statements before the switch statements.

p. Review the switch statement and the value of argc which is used
by the switch statement. Can you predict where StepInto will go
next? Hit StepInto and see if you are correct.

q. The debugger went to the Case statement where argc == 1 and is
about to do a cout statement.

r. We could StepInto each of those cout statements, but that would
not be interesting. Instead, click on the line number associated
with the return statement to create a new breakpoint there.

s. Now hit the Continue button and the debugger will skip past all
those cout statements and stop at the return statement, just before
ParseCmdParms is about to return to main.

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

6

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

t. In the Variable Windows, notice that value of parms. It has a width
of 20, it is specifying Left justification, and its inputText is set to

something but it is unclear what. Click on the dots icon on the
right, and NetBeans will pop up a new window to show you the rest
of the contents of parms. Can you see what inputText is set to
now? You should see the string value near the end of this display.
No need for you to understand the gory details, just notice that the
field inputText is set to "The quick brown fox jumped over the lazy
dog".

u. Close the window and hit the StepOut button (or the <ctrl-F7>
button). The StepOut button continues running the program until it
completes the current function and returns to the caller where it
then stops once again, waiting for the next debug commend. In
this case, it will continue running until it returns to main() following
the call to ParseCmdParms.

v. Now look at the Variables window and check what the current value
of parms is now. Does it still contain the values that it had within
the ParseCmdParms procedure? If not, then why not?

w. To exit debugging mode, terminate the current debug session by
hitting the Finish Debugger Session Button (or the <shift-F5>
button).

x. You can remove individual breakpoints by click on the red square
where the breakpoint is, and it will be deleted and the line number
redisplayed.

y. To delete all breakpoints, go to the BreakPoint window and right-
click to get the breakpoint menu. From there, you can select
Delete-All to delete all breakpoints, or Disable-All to disable the
breakpoints for now (but you can reenable them later).

z. Once you have deleted (or disabled) all the breakpoints, you can hit
the Continue button to complete the execution of the program to
the end.

4. Fix Lab04Main.cpp so that ParseCmdParms works and show the TA

a. Fix ParseCmdsParms so that parms is set correctly when the
function returns. Try to solve this on your own, or with your
partner. You can ask your TA for help if you get stuck.

b. When you have fixed the program, it should display the following in
the output window when you run it:
Using default parameters:

 Width=20 Justification=Left Text="The quick brown fox jumped over the lazy dog"

The quick brown fox

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

7

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

jumped over the lazy

dog

RUN FINISHED; exit value 0; real time: 0ms; user: 0ms; system: 0ms

 Show your TA this output for partial Participation Marks. You must
also get Command Line Processing working for full Participation
Marks. Keep going!

5. Command Line Arguments

Many programs accept command line arguments when they are invoked.
For example, Lab04Main.cpp justifies the same text string every time in
exactly the same way. We might instead want to use the command line to
pass our own text to be formatted by this program. One might want to
specify the width and justification type as left, right, or center.

a. Compile and test Lab04Main.cpp from the command line.

To call Lab04Main.cpp from the Command Line, you need to build it from
the command line. Using a terminal window, go to your NetBeans folder
with your Lab04Main.cpp program (using the cd command) and compile it
using the following command:

g++ -std=c++11 Lab04Main.cpp -o justify

Once compiled, you can invoke it from the command line. Here is one
example:

justify 20 C "This is the text to fill and justify."

This would produce the following output:
 parameters:
 Width=20 Justification=Center Text="This is the text to fill and justify. "

This is the text to
 fill and justify.

b. Testing Command Line Parameters using NetBeans

To set the command line parameters using NetBeans, select the Project
Lab04 from the project explorer window, and right-click and select
properties.

From the Properties window, select the "Run" category. You will see a
menu of Configuration Options. At the top you can select either the
"Release" configuration or the "Debug" Configuration. Select "Debug" for
running with the debugger (the other option is the configuration used
when you hit the RUN button instead of the DEBUG button).

The first Configuration option under "General" is called "Run Command".
This is where you set the command line parameters within NetBeans.

The Run Command starts with "${OUTPUT_PATH}". Click on this, and add
your command line parameters after this string. Set this configuration

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

8

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

Option as follows: (all on one line)

"${OUTPUT_PATH}" 35 Right Everything should be made as simple as
possible, but no simpler. - Albert Einstein

Run Lab04Main.cpp from NetBeans with the Run Command set as above.
The program should produce the following output:

 parameters:
 Width=35 Justification=Right Text="Everything should be made as simple as possible,
but no simpler. - Albert Einstein "

Everything should be made as simple
 as possible, but no simpler. -
 Albert Einstein

RUN FINISHED; exit value 0; real time: 0ms; user: 0ms; system: 0ms

c. Update the Block Comment at the top of Lab04Main.cpp with your name,
student number, email address, etc. Students need not update or enhance
the other comments associated with the functions within this file.

Check in with the TA

Demonstrate to the TA that you are able to pass command line arguments to Lab04Main
and have it right justify your text as shown above.

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

9

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

B. Lab Exercises – Please work on Assignment #1

There are no Lab Exercises this week. Please spend the remaining time
working on the Assignment #1 programming problems. Use this time to ask
your TA for help. You may discuss your work with your partner, but the
code you submit for the assignment must be your own.

Now that you know how to use the NetBeans debugger, you will find that
debugging your programs will be much easier. It might even be fun.

As you work on Assignment #1, please realize that you will not only be
graded on program correctness, but also on program clarity, efficiency, and
simplicity.

Once you have a working program, be sure that you comment it well. When
you think it is done, go back and look for ways to make the code clearer,
more efficient, and less complex.

As Albert is famous for saying: Everything should be made as simple as
possible, but no simpler.

Cmpt 135 Lab Exercises wk04: Debugging Code with NetBeans Jan 25th 2016

10

Instructor: Scott Kristjanson Wk04

TA: Wenqiang Peng Version 1.01

C. Lab Exercise Submission – To be completed by Students

Students are responsible for submitting the requested work files by the
stated deadline for full marks. Since Lab Exercise solutions may be
discussed in class following the submission deadline, late submissions will
NOT be accepted. It is the student’s responsibility to submit on time. If you
do not have access to CSIL or issues with the computers in CSIL, please
contact the CSIL Help Desk at helpdesk@cs.sfu.ca

Students may work in teams of two for the lab, and submit a single set of
files on behalf of the group in CourSys.

1. You must submit your final version of the following file before the
deadline. Students must ensure that all submitted code compiles and is
properly commented and formatted for readability:

 Lab04Main.cpp

2. For students working in the lab with a partner, only one submission is
required for the group of two students

3. Files are to be submitted into CourSys under Lab04. Use the Manage
Groups menu to create a group name unique to you and that includes
the week number.

4. Attendance and Participation marks are based on everyone in the group.
If you are the only person in the group, then your mark is your own. If
there are two members in a group, both must attend the tutorial and
make progress in order for either student to receive marks. So choose
your partner wisely!

