Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

Assignment 3 —Dynamic Arrays and Classes

Required Reading
Problem Solving with C++

Chapter 7 — Arrays

Chapter 9 — Pointers and Dynamic Arrays
Chapter 10 - Classes

Chapter 11 — Classes and Arrays

Optional Reading
Chapter 13 — Pointers and Linked Lists

Instructions — PLEASE READ (notice bold and underlined phrases)
This assignment has four parts:

A. Written — Answer the questions, submit to CourSys
B. Programming — Code must be well commented, compile/test, then submit
C. Bonus — Optional Programming Assignment for Bonus Marks

D. Submission — Submit specified assignment files by deadline

1. This is _an _individual assignment. You may NOT work in teams for this
assignment. You may discuss ideas with others, but you must answer all
questions and write all the code yourself. Plagiarism by students will result
penalties that may include receiving zero for the assignment.

2. All Files Submitted for Programming Assignments must include block
comments for the file, each class, and each function or method. Block
comments at the top of each file must include the name of the file plus a
short description of what the file does, and the Student’s name, Number,
and school email address.

3. Submission deadline: 11:59pm Tuesday Mar 29th. You should be able to
complete the work if you have completed the required reading for the
assignment. More material is available in the class Slides. While you have
seen most of what is discussed here, some topics discussed in this
assignment and needed for your submission may not be seen until another
class! You may submit before the deadline if you prefer. You may resubmit
again later without penalty provided you resubmit before the deadline.

4. Late penalties are based on the CourSys timestamp of the last file
submitted by the student. Late penalties apply to the entire assignment,
even if only a single file was submitted late.

Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

A. Written Assignment — Submit in CourSys

Students may discuss the problems with fellow students, but MUST
complete the work individually. Submitted answers must be your own work.

This section does not require any programming. Write your answers neatly
in a document such as a Word Document that will be submitted to CourSys
as part of the assignment.

Your document must be called a3Writeup.doc or a3Writeup.pdf and must
include your name, student number, and email address. Use Courier font
and double-spacing in your write up. Image files of handwritten work is not
acceptable unless otherwise specified.

1. Chapter 7 — Arrays 5 Marks

(@) What does the term Stride refer to when discussing arrays?

(b)Given an array of pointers like argv, on a 64-bit machine, how does one
compute the address of argv]i] if the argv array starts at address X?

(c)When passing an array as a parameter to a function, can that function
make changes to the contents of the array?

(d)When passing an array as a parameter, how do we ensure that the
function cannot change the array elements?

(e)Given a two dimensional int Array A[4][6], give the formula to find the
address in memory of A[row][col], assume the stride of an int is 4 and
the starting address of A is address 1000.

2. Chapter 9 — Pointers and Dynamic Arrays 5 Marks

(a)Use typedef to define a new type called DoubleArrayPtr that points to an
array of doubles.

(b)Define a variable of type DoubleArrayPtr called p and initialize p to point
to an array of 10 doubles using the new operator.

(c)When allocating memory for array p above, what is the name of the
memory that the NEW operator allocates memory from?

(d)When one is finished using a dynamic array, one must return the
memory so it can be re-used. Write the code required to free the memory
allocated to array p above.

(e)Given the two dimensional dynamic array m presented in class, give the
formula to find the address in memory of A[row][col], assume the stride
of an int is 4 and the starting address of A is address 1000.

Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

3. Chapter 10.4 - Introduction to Inheritance 5 Marks

Review the UML Diagram below describing the BankAccount Hierarchy.
Assume that all methods are public and all member variables are private.
Assume that the String class is equivalent to string, and class Dollars is the
same as class Money that was presented in class.

BankAccount

owher | String
balance : Dollars

deposit { amount : Dollars 3
wiithdrawad [amrount | Dolisrs)

[

CheckingAccount SavingsAccount
insufficientFundsFee : Dollars annualinterestRate | Percentage
processCheck { checkToProcess @ Check) depositonthlyInterest {)
withdrawal { amount @ Dollars) withdrawal {amount : Dollars)

(@) Write up the class declaration for the BankAccount class. The class
declaration should include the listed public member functions and
private member variables. You do not need to implement the constructor
or methods, just declare them in the class declaration.

(b)Write up the class declaration for the CheckingAccount class. Ensure
that the class declaration captures any parent/child relationship.

(c)Write up the class declaration for the SavingsAccount class. Ensure that
the class declaration captures any parent/child relationship.

(d)Which classes are base classes and which are derived classes?

(e) If MySavings is instantiated from the SavingsAccount class, then which
class' method gets invoked by MySavings.withdrawal($10) and which
class's method gets invoked by MySavings.deposit($10)?

Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

B. Programming — To be completed by Students Individually

You must not use the vector class for this assignment.

1. Sorting Arrays 10 Marks

Write a void function called bubbleSort that accepts an array a and the
number of int elements in that array num. This function should sort the

elements such that:
al0] £ a[l] £ .. £ alnum -1]

Your function should be submitted in a file called bubbleSort.cpp. Your file
must #include header file bubbleSort.h to declare the function prototype for
bubleSort as shown below. This file is available on the Assignment page in
CourSys.

Test your function yourself to perform unit testing with your own test
program. Then perform integration testing by testing your bubbleSory.cpp
file with the test program bubbleSortTest.cpp that will also be provided in
CourSys.

Your function must use the following signature defined in bubbleSort.h:
void bubbleSort (int a[], int num);

Test Example:

Given array A[5] where:
A = {5,4,3,2,1}

After calling:
bubbleSort (A, 5);

Array A will contain:
A = {1/2/31415}

Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

2. Working with Two-Dimensional Arrays 10 Marks

Write a void function called addToColumn that accepts a two-dimensional
array arr[][5], the number of rows in that array, a column number, and an int
value that is to be added to every element in that column.

Your function must be defined in file addToColumn.cpp and #include the
header file addToColumn.h which is available in CourSys. Test your
function using the test program addToColumnTest.cpp.

Your function must use the following signature defined in addToColumn.h:
void addToColumn (int arr[][5], int numRows, int colNum, int numToAdd) ;

Example:

Given array A[5][5] where:
A = {{1,0,0,0,0},
{0,1,0,0,0},
{0,0,1,0,0},
{0,0,0,1,0},
{0,0,0,0,1}}

After calling addToColumn:
addToColumn (A, 5, 2, 1);

Array A will contain:
A = {{1,0,1,0,0},
{o,1,1,0,0},
{0,0,2,0,0},
{0,0,1,1,0},
{0,0,1,0,1}}

Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

3. Practice with Dynamic Arrays as Return Values 20 Marks

This section will contain a series of problems involving functions that
accept array parameters and must return a new dynamic array (allocated
from the heap) as the return value. Remember, you are not to use cin or
cout for these problems! The input will involve arrays and the output should
be a newly allocated dynamic array.

For each problem below, there will be an associated header file which your
C++ file should include. For example, in the first problem, the header file
helloName.h will be provided on the Assignment Page, and your solution
should be stored in a separate file called helloName.cpp. Note that file
helloName.cpp contains no main() function. That will be provided by the
assignment test program that you can download from CourSys.

A single test program called A3B3Test.cpp will be provided. It will include
header file A3B3.h that specifies which problems you wanted tested. You
will need start with the supplied A3B3.h header and must modify the
#defines near the top of the header file to specify which files you have
implemented and want tested for marks. You will submit your copy of
A3B3.h into CourSys as well.

To use the test program, create a project with A3B3Test.cpp and A3B3.h,
and add your solutions as separate C++ source files to the project. When
you build the project, it will test each function according to the #define
statements found in A3B3.h (which defaults to testing nothing).

(a) helloName
Given a C string parameter called name, e.g. "Bob", return a greeting of the
form "Hello Bob!".
Remember that C strings must be null terminated, so the above string would
contain the four chars: name[0]='B', name[1]='0"; name[2]='b’; name[3]=0; Your
function will accept a C string that is null terminated, and must return a new
dynamic char array that is also null terminated.

Your function must have the following signature:
char* helloName (const char namel]) ;

For example:

helloName ("Bob") — "Hello Bob!"

helloName ("Alice") — "Hello Alice!"

helloName ("X") — "Hello X!"

helloName (nullptr) - "Hello !"
Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

(b)makeAbba

Given two C strings, a and b, return the result of putting them together in
the order abba, e.g. "Hi" and "Bye" returns "HiByeByeHi".

Your function must have the following signature:
char* makeAbba (const char a[], const char b[]):;

For example:
makeAbba ("Hi", "Bye") — "HiByeByeHi"
makeAbba ("Yo", "Alice") - "YoAliceAliceYo"
makeAbba ("What", "Up") - "WhatUpUpWhat"

(c)doubleChar

Given a string, return a C string where for every char in the original, there
are two chars.

Your function must have the following signature:
char* doubleChar (const char str[]):;

For example:
doubleChar ("The") — "TThhee"
doubleChar ("AAbb") — "AAAAbLDbLDbLDb"
doubleChar ("Hi-There") - "HHii--TThheerree"

(d)zipZap

Look for patterns like "zip" and "zap" in the C string, starting with 'z' and
ending with 'p'. Return a string where for all such words, the middle letter is
gone, so "zipXzap" yields "zpXzp".

Your function must have the following signature:
char* zipZap (const char str[]):

For example:

zipZap ("zipXzap") - "zpXzp"

zipZap ("zopzop") - "zpzp"

zipZap ("zzzopzop") — "zzzpzp"

zipZap("z" - "z"
Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

(e)fizzString

Given a string str, if the string starts with "f" return "Fizz". If the string ends
with "b" return "Buzz". If both the "f* and "b" conditions are true, return
"FizzBuzz". In all other cases, return a string copy of the original.

Your function must have the following signature:
char* fizzString (const char str[]):;

For example:
fizzString("fig") - "Fizz"
fizzString("dib") - "Buzz"
fizzString ("fib") - "FizzBuzz"

(f) fizzString2

Given an int n, return the string form of the number followed by "!". So the
int 6 yields "6!". Except if the number is divisible by 3 use "Fizz" instead of
the number, and if the number is divisible by 5 use "Buzz", and if divisible
by both 3 and 5, use "FizzBuzz". Note: the % "mod" operator computes the
remainder after division, so 23 % 10 yields 3. What will the remainder be
when one number divides evenly into another?

Your function must have the following signature:
char* fizzString2 (int n);

For example:
fizzString2(1) - "1'!"
fizzString2(2) - "2!"
fizzString2(3) - "Fizz!"
fizzString2(-1)- "-1!'"

(9)fizzArray

Given a non-negative number n, create and return a new int array of length
n+1, containing the number n as the first element, followed by the numbers
0,1, 2, ...n-1for the remaining n elements. The value of n may be 0. You do
not need a separate if-statement for the length==0 case; the for-loop should
naturally execute O times in that case, so it just works.

The syntax to make a new int array is: new int[desired_length].

Your function must have the following signature:
int* fizzArray (unsigned int n);

For example:

fizzArray(4) {4, 0, 1, 2, 3}

fizzArray(1) - {1, O}
fizzArray(10) - {10, O0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
fizzArray(0) — {0}
Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

(h)fizzArray2

Given non-negative number n, return a new array of strings of length n,
containing the C++ strings "0", "1" "2"... n-1. If n is O or less, return
nullptr. Note that to_string() constructs string for most numeric types.

The syntax to make a new string array is: new string[desired_length]

Your function must have the following signature:
string* fizzArray2 (int n);

For example:
fizzArray2(4) N {"0", ||1||, ||2|l, ll3"}
fizzArray2(2) - {"O0", "1"}
fizzArray2 (0) - nullptr

(i) fizzArray3

Given non-negative start and end numbers, return a new array containing
the sequence of integers from start up to but not including end, so start=5
and end=10 yields {5, 6, 7, 8, 9}. The end number will be greater or equal to
the start number. Note that a zero length array is valid.

Your function must have the following signature:
int* fizzArray3 (unsigned int start, unsigned int end);

For example:
fizzArray3(5, 10) - {5, 6, 7, 8, 9}
fizzArray3(11, 18) - {11, 12, 13, 14, 15, 16, 17}
fizzArray3(1, 1) - {}

() fizzBuzz

This is slightly more difficult version of the famous FizzBuzz problem that is
sometimes given as a first problem for job interviews. Consider the series
of numbers beginning at non-negative number start and running up to but
not including end, where start < end, so for example start=1 and end=5
gives the series 1, 2, 3, 4. Return a new string array containing the string
form of these numbers, except for multiples of 3, use "Fizz" instead of the
number, for multiples of 5 use "Buzz", and for multiples of both 3 and 5 use
"FizzBuzz". This version is a little more complicated than the usual version
since you have to allocate and index into an array instead of just printing,
and this specifies the start/end instead of just always doing 1..100.

Your function must have the following signature:
string* fizzBuzz (unsigned int start,unsigned int end) ;

For example:
fizzBuzz (1, 6) — {"1","2" ,"Fizz" ,6"4" ,"Buzz"}
fizzBuzz(1’ 8) N {"1","2","Fizz"’"4"’"Buzz","Fizz"’"7"}
fizzBuzz (12,17) - {"Fizz","13","14" ,"FizzBuzz","16"}

Instructor: Scott Kristjanson Wk10
TA: Wengiang Peng Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

4. Dynamic Two-Dimensional Dynamic Arrays 20 Marks

One way to define a two dimensional dynamic array of doubles is to first
create a type for each row (db1lRow) to store the array of doubles for a given
row, then define a type for the Matrix (dblMatrix) to store pointers to each
of the rows.

typedef double* dblRow;

typedef dblRow* dblMatrix;

With these definitions, one can define a 4x6 dynamic matrix m as follows.
dblMatrix m = new dblRow[4];
for(int i=0; i<4; i++)
m[i] = new double[6];

Create a file called dblMatrix.cpp which #includes dblMatrix.h and
implements the two functions listed below. Test your program using the
dbIMatrixTest.cpp program provided in CourSys.

You must create a function that allocates a dynamic matrix of Rows rows by
Cols columns using the new operator as shown above. All elements of the
newly allocated array must be initialized to the value specified as initVal.

Your function must have the following signature:
dblMatrix allocDblMatrix (int Rows, int Cols, int initVval) ;

You must also create a function that deallocates a dblMatrix using the
delete operator. Care must be taken to delete the rows before deleting the
dbIMatrix. The parameter m must be set to nullptr when this routine returns.
Your function must have the following signature:

void deallocDblMatrix (dblMatrix& m, int numRows) ;

With dblIMatrix defined as described above, we can access any element in
the array using standard C++ array notation. For example, to set the double
in row 2, column 5, to the value 3.14, we can do the following:

m[2] [5] = 3.14;

Create an addDoubleToColumn function that, similarly to the addToColumn
function defined in question 2, adds a double to a specific column of a
dblMatrix. Your function must use the following signature defined in
addDoubleToColumn.h:

void addDoubleToColumn (dblMatrixé& m,int numRows,int colNum,double numToAdd) ;

Unit test your functions to ensure that they work as expected. The program
dbIMatrixTest.cpp will be provided prior to the due date so you may perform
integration testing before submitting into CourSys.

Instructor: Scott Kristjanson Wk10

TA: Wengiang Peng 10 Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

5. Classes with Dynamic Arrays as Members 25 Marks

The dblMatrix array type defined (using typedef) in question B4 allows a
matrix of any size to be dynamically allocated. Access to any element in the
array is done using the standard array notation. For example, to set the
value in row 2 column 5 to the value 3.14, one does the following:

m[2] [5] = 3.14;

This works well, but has the drawback that array m does not contain any
information about the number of rows and columns. While we can access
individual elements within a dbIMatrix, we have no way to ensure that the
indexes are in range, nor create general routines that operate on a dblMatrix
without needing to pass in dimensions of the matrix.

The solution is to encapsulate dblMatrix in a class called Matrix. This class
contains member variables to store the number of rows and columns
associated with the dbIMatrix. It also provides overloaded operators for <<
and for the array indexing operators [].

You must implement Matrix.cpp which implements the Constructors for the
Matrix class. Use the NEW operator to allocate enough dynamic memory to
store the number of rows and columns specified in the constructor.

Because this class contains members that use dynamic memory, you must
also implement "The Big Three": (see wk10 slides on "Arrays and Classes")

e The Copy Constructor

e The Assignment Operator

e The Destructor

You must also implement the addToColumn method that adds a double to
all entries in the specified column. Refer to Matrix.h in CourSys for the full
declaration of Matrix class needed for this assignment.

class Matrix {

public:
// Constructors - use NEW operator to alloc dynamic memory for m
Matrix () ;
Matrix (int rows, int cols);
Matrix(int rows, int cols, int datalen, double *data) ;
// Copy Constructor - Allocs new m, and copies data from mat
Matrix (Matrix& mat)
// The Assignment Operator
void operator=(const Matrixé& right side);
// Destructor - Calls delete[] to return memory to heap
~Matrix () ;
// Method to add a double to all entries in column colNum
void addToColumn (int colNum, double numToAdd) ;

};

Header Matrix.h defines class Matrix and its helper class Row. Helper

functions are found in MatrixHelper.cpp. MatrixTest.cpp contains test code.
Submit your completed Matrix class to CourSys as file Matrix.cpp.

Instructor: Scott Kristjanson Wk10

TA: Wengiang Peng 11 Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

C. Programming for Bonus Marks — To be completed individually

These programming problems are optional. You may complete them if you
choose and will receive bonus marks that may be used to top up your overall
Assignment portion of your course grade.

1. Matrix Methods 10 Marks

This question requires that you have successfully completed question B5
since this question depends on using your completed Matrix class.

Create project MatrixMethods that contains the following files: Matrix.h,
MatrixHelper.cpp, MatrixMethods.cpp, and MatrixMethodsTest.cpp. Your
code will be placed in MatrixMethods.cpp, while the other files will be
available for download from CourSys.

Recall from Question B4 that the Matrix class includes getters and setters
for determining the number of Rows and Columns in a Matrix, plus methods
for getting and setting individual elements (see Matrix.h for details):

// getters and setters
int getNumRows () const;
int getNumCols () const;

// Getter returns zero if row or col is out of range
double getElement(int row, int col) const;

// Setter does nothing if row or col is out of range
void setElement (int row, int col, double newVal) ;

For example, the following array A[5][5] could also be represented as a
object M of our Matrix class by calling the Matrix constructor with a pointer
to the first element of the array A[O][0O].

double A[5][5] = {

{ 0/ 2/ 0/ _21 2-5}/
{ 2/ 0/ 1/ 0, 1-6}1
{ o, i, o, 1, 0},
{ _21 0/ 1/ 0/ 0}/
{2.5, 1.6, O, O, 0}

};

Matrix M(5,5,25,&(A[0][0]));

In this example, M.getNumRows() returns 5 while M.getElement(4,1) returns
the double 1.6. Because we created an overloaded [] operator, one can also
retrieve the element at row 4 column 1 using the notation M[4][1].

Instructor: Scott Kristjanson Wk10

TA: Wengiang Peng 12 Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

Implement each of the following functions in MatrixMethods.cpp using your
Matrix class, and test within your MatrixMethods project:

(a) Write a function that returns true if m has at least one row and one

column. It must have this signature:
bool is matrix(const Matrix& m);

(b)Write a function that prints a neatly formatted version of m to the
specified ostream with one row per line, columns evenly spaced such as

the example provided below. Be creative, it need not match this example.
void print (ostream& outStream, const Matrixé& m) ;

Low

1.

[

PR e S
O o o0
- - -
[T T % I e]
[T I R o]

Rov Z.5 1.8
(c)Write a function that tests if m is a square matrix. A matrix is square if it

has the same number of rows as columns.
bool is_square (const Matrixé& m);

[T P T)

[=T]

Wi Ld B
[I ST

==
=]
b5

(d)Write a function that tests if m has only Os on its main left to right

diagonal. For example, matrix A above has a O diagonal.
bool has_zero_diag(const Matrixé& m);

(e)Write a function that tests if m is symmetric. For example, the matrix A

above is symmetric.
bool is_symmetric(const Matrix& m);

(f) Write a function that returns the sparsity of a matrix m. The sparsity of a
matrix is defined to be the number of Os in it divided by the total number

of entries. For instance, the matrix A above has sparsity of 13/25 or 0.52.
double sparsity(const Matrix& m) ;

(g)Write a function that tests if m is simple graph. A matrix m is a simple

graph just when it is square, symmetric, and has a zero diagonal.
bool is_simple graph(const Matrix& m);

For example, the matrix A above is a simple graph that looks like this:

(h)Write a function that returns a vector containing the degrees of all the
nodes in a simple graph (i.e. a matrix m for which is_simple_graph(m)
returns true). The degree of a node in a simple graph is the number of

edges attached to that node. For example, for the matrix A above:
node O has degree 3 node 3 has degree 2
node 1 has degree 3 node 4 has degree 2
node 2 has degree 2

Here is the function header:
vector<int> degrees (const Matrix& m) ;

Instructor: Scott Kristjanson Wk10

TA: Wengiang Peng 13 Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

2. Linked Lists 20 Marks

Linked lists are a dynamic data structure used to store a collection of data
elements. Linked lists are more flexible than arrays. When dynamic arrays
must change capacity, an entirely new array must be allocated and the
contents of the old array copied into the new one. Link Lists avoid by allowing
the linked list to grow or shrink one element at a time.

Elements within a linked list are called Nodes. Each node contains data plus a
pointer used to point to the next element in the list. A special node called the
Head points to the first node in the list. The last node in the list contains a
special pointer value called nullptr. If Head's pointer is the nullptr, which
indicates that the list is empty.

Linked Lists are excellent for storing (key, value) pairs used in databases. One
can search a linked list by comparing each node to some key. If the key
matches the node's key, return the value associated with that node, otherwise
continue searching by following the next pointer until the either the key is
found, or anullptr is encountered.

New nodes can be added to the end of the list by creating a new node using
the NEW operator, setting its pointer to nullptr, then setting the last node's
pointer to point to this new node. Insertions and deletions are a little trickier
and those concepts will be discussed in class.

A simple struct called Node is defined in header LinkedList.h as follows:
struct Node {
string key;
int value;
Node *nextNode;

}

Implement the LinkedList methods declared in LinkedList.h to help our Zoo
Keeper manage his Zoo Animals with his ZooKeeper.cpp test program:
class LinkedList {
public:
LinkedList(); // Default Constructor

// Methods for managing a LinkedList of Nodes

bool findKeyAndGetValue (string key, int& wvalue),

void addKeyValuePair (string key, int wvalue),
) ;

void setKeyValue (string key, int newValue

void delNode (string key);

void delAllNodes (); // Delete all nodes in the list

int 1length (); // return number of Nodes in the 1list

// Method for displaying all (key,value) pairs in a line

friend ostream &operator<<(ostream &os, const LinkedList &list);
private:

Node *head = nullptr;
};

Instructor: Scott Kristjanson Wk10

TA: Wengiang Peng 14 Version 1.2

Cmpt 135 Assignment 3: Dynamic Arrays and Classes Mar 11" 2016
Due: Mar 29th 11:59pm

D. Submission — To be completed by Students Individually

Due date: Tuesday Mar 29" 11:59pm

Students are responsible for submitting the requested work files by the stated
deadline for full marks. It is the student’s responsibility to submit on time.
Submissions via email will NOT be accepted.

You must submit your final version of the following files before the deadline.
All written answers for Parts A must be included in separate Word or PDF
documents which are double spaced and include the Student’s Name, Student
Number, and email at the top. Students must ensure that all submitted code
compiles and is properly commented and formatted for readability.

Submit into CourSys:

Part A : a3Writeup.doc, a3Writeup.docx, or a3Writeup.pdf
Question B1 - bubbleSort.cpp

Question B2 :addToColumn.cpp

Question B3 : A3B3.h, helloName.cpp, makeAbba.cpp, ..., fizzBuzz.cpp
Question B4 : dblMatrix.cpp

Question B5 : Matrix.cpp

Question C1 : MatrixMethods.cpp

Question C2 : LinkedList.cpp

Submission of solutions for D1 and D2 are optional.

Late Submissions: If you submit any component after the deadline, it affects
the timestamp for the entire submission. If any component is submitted late,
the late penalty will be applied to all components.

Late Penalty is 10% per day late, or portion of a day late. Late submissions will
be accepted up to two days late with the final cut-off Apr 1°' at 11:59pm.

Files are to be submitted into CourSys under Assignment 3.

Instructor: Scott Kristjanson Wk10

TA: Wengiang Peng 15 Version 1.2

