
Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

1

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

Assignment 3 –Dynamic Arrays and Classes Solutions

Required Reading
Problem Solving with C++

Chapter 7 – Arrays

Chapter 9 – Pointers and Dynamic Arrays

Chapter 10 – Classes

Chapter 11 – Classes and Arrays

Optional Reading
Chapter 13 – Pointers and Linked Lists

Instructions – PLEASE READ (notice bold and underlined phrases)

This assignment has four parts:
A. Written – Answer the questions, submit to CourSys

B. Programming – Code must be well commented, compile/test, then submit

C. Bonus – Optional Programming Assignment for Bonus Marks

D. Submission – Submit specified assignment files by deadline

1. This is an individual assignment. You may NOT work in teams for this
assignment. You may discuss ideas with others, but you must answer all
questions and write all the code yourself. Plagiarism by students will result
penalties that may include receiving zero for the assignment.

2. All Files Submitted for Programming Assignments must include block
comments for the file, each class, and each function or method. Block
comments at the top of each file must include the name of the file plus a
short description of what the file does, and the Student’s name, Number,
and school email address.

3. Submission deadline: 11:59pm Tuesday Mar 29th. You should be able to
complete the work if you have completed the required reading for the
assignment. More material is available in the class Slides. While you have
seen most of what is discussed here, some topics discussed in this
assignment and needed for your submission may not be seen until another
class! You may submit before the deadline if you prefer. You may resubmit
again later without penalty provided you resubmit before the deadline.

4. Late penalties are based on the CourSys timestamp of the last file
submitted by the student. Late penalties apply to the entire assignment,
even if only a single file was submitted late.

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

2

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

A. Written Assignment – Submit in CourSys

Students may discuss the problems with fellow students, but MUST
complete the work individually. Submitted answers must be your own work.

This section does not require any programming. Write your answers neatly
in a document such as a Word Document that will be submitted to CourSys
as part of the assignment.

Your document must be called a3Writeup.doc or a3Writeup.pdf and must
include your name, student number, and email address. Use Courier font
and double-spacing in your write up. Image files of handwritten work is not
acceptable unless otherwise specified.

1. Chapter 7 – Arrays 5 Marks

(a) What does the term Stride refer to when discussing arrays?
Stride refers to the number of bytes for the base element of an array. An
array element of ints has a stride of 4 bytes (the size of an int on a 64-Bit
Ubuntu machine) while an array of pointers has a string of 8 bytes (the size
of a pointer on a 64-bit machine).
(b) Given an array of pointers like argv, on a 64-bit machine, how does one

compute the address of argv[i] if the argv array starts at address X?
Since argv is an array of pointers, its stride is 64-bits, and the address of
argv[i] is calculated as: X + 8*i
(c) When passing an array as a parameter to a function, can that function

make changes to the contents of the array?
Yes, the array is not passed by copying the array, but instead a pointer to
the array is passed to the function. Since the array's address is passed to
the function, the function can modify the array's contents, provided the
const modifier is not specified in the parameter list.
(d) When passing an array as a parameter, how do we ensure that the

function cannot change the array elements?
Add the const keyword to the array formal parameter in the function
declaration. For example: void foo(const int Arr[10]);
(e) Given a two dimensional int Array A[4][6], give the formula to find the

address in memory of A[row][col], assume the stride of an int is 4 and
the starting address of A is address 1000.

Address of A[row][col]
 = Start Address of row + col*stride of an int
 = Start Address of Array A + row*stride of a row + col*stride of an int
 = 1000 + row * stride of a row + col*stride of an int
 = 1000 + row *(stride of an int * number of ints per row)+ col*4
 = 1000 + row *(4 * 6)+ col*4
 = 1000 + 24*row + 4*col

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

3

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

2. Chapter 9 – Pointers and Dynamic Arrays 5 Marks

(a) Use typedef to define a new type called DoubleArrayPtr that points to an
array of doubles.

 typedef double* DoubleArrayPtr;
(b) Define a variable of type DoubleArrayPtr called p and initialize p to point

to an array of 10 doubles using the new operator.
 DoubleArrayPtr p = new double[10];
(c) When allocating memory for array p above, what is the name of the

memory that the NEW operator allocates memory from?
 The Heap
(d) When one is finished using a dynamic array, one must return the

memory so it can be re-used. Write the code required to free the memory
allocated to array p above.

 delete [] p;
(e) Given the two dimensional dynamic array m presented in class, give the

formula to find the address in memory of A[row][col], assume the stride
of an int is 4 and the starting address of A is address 1000.

From slide 32 of slides wk10.1 - Dynamic Arrays:

typedef int* IntArrayPtr;
IntArrayPtr *m = new IntArrayPtr[4];
for(int i = 0; i<4; i++)
 m[i] = new int[4];

Since array A is defined using the method used by m above,
Address of A[row][col]
 = Start Address of row + col*stride of an int
To find the start address of row, need to locate the row pointer within A
Row Pointer address:
 = Start Address of Array A + row * stride of a pointer
 = 1000 + 8 * row
Dereference Row Pointer Address to get start address of the row:
 = *(1000 + 8*row)
Address of A[row][col]=
 = Start Address of row + col*stride of an int
 = *(1000 + 8*row) + col*4
 = A[row]+4*col

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

4

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

3. Chapter 10.4 - Introduction to Inheritance 5 Marks

Review the UML Diagram below describing the BankAccount Hierarchy.
Assume that all methods are public and all member variables are private.
Assume that the String class is equivalent to string, and class Dollars is the
same as class Money that was presented in class.

Do

(a) Write up the class declaration for the BankAccount class. The class

declaration should include the listed public member functions and
private member variables. You do not need to implement the constructor
or methods, just declare them in the class declaration.

// Anything close is ok.
class BankAccount {
public:
 void deposit(Dollars amount);
 void withdrawal(Dollars amt); // ok to add virtual keyword
private:
 string owner;
 Dollars balance;
};

(b) Write up the class declaration for the CheckingAccount class. Ensure
that the class declaration captures any parent/child relationship.

(c) Write up the class declaration for the SavingsAccount class. Ensure that
the class declaration captures any parent/child relationship.

class CheckingAccount : BankAccount {
public:
 void processCheck(Check checkToProcess);
 void withdrawal(Dollars amt);// Must use override keyword if

// used virtual for BankAccount
private:
 Dollars insufficientFundsFee;
};

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

5

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

(d) Which classes are base classes and which are derived classes?
Base class: BankAccount
Derived classes: CheckingAccount and SavingsAccount

(e) If MySavings is instantiated from the SavingsAccount class, then which
class' method gets invoked by MySavings.withdrawal($10) and which
class's method gets invoked by MySavings.deposit($10)?

MySavings.withdrawal($10) invokes: SavingsAccount:: withdrawal
MySavings.deposit($10) invokes: BankAccount::deposit

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

6

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

B. Programming – To be completed by Students Individually

You must not use the vector class for this assignment.

1. Sorting Arrays 10 Marks

Write a void function called bubbleSort that accepts an array a and the
number of int elements in that array num. This function should sort the
elements such that:

 a[0] ≤ a[1] ≤ … ≤ a[num -1]

Your function should be submitted in a file called bubbleSort.cpp. Your file
must #include header file bubbleSort.h to declare the function prototype for
bubleSort as shown below. This file is available on the Assignment page in
CourSys.

Test your function yourself to perform unit testing with your own test
program. Then perform integration testing by testing your bubbleSory.cpp
file with the test program bubbleSortTest.cpp that will also be provided in
CourSys.

Your function must use the following signature defined in bubbleSort.h:
void bubbleSort(int a[], int num);

Solution:

void bubbleSort(int d[], int num) {
// Any sort will do, but this is bubbleSort
// **
// This FOR loop looks to "bubble up" the
// largest double from d[0] to d[i] to d[i].
// i starts with i=num-1, so first pass finds
// the largest number in array and places it
// in d[num-1]. Next loop finds next largest
// and places it in d[num-2], and so on.
for(int i=num-1; i>0; i--)

 // This FOR searches for the largest of
 // those remaining to be bubbled into d[i].
 for(int j=0; j<i; j++)

 // Check if numbers are out of order
 // Swap them if they are.
 if (d[j] > d[j+1]) {
 // d[j] and d[j+1] in wrong order
 // So let's swap them!
 // ******************************
 int tmp = d[j];
 d[j] = d[j+1];
 d[j+1] = tmp;
 }
}

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

7

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

2. Working with Two-Dimensional Arrays 10 Marks

Write a void function called addToColumn that accepts a two-dimensional
array arr[][5], the number of rows in that array, a column number, and an int
value that is to be added to every element in that column.

Your function must be defined in file addToColumn.cpp and #include the
header file addToColumn.h which is available in CourSys. Test your
function using the test program addToColumnTest.cpp.

Your function must use the following signature defined in addToColumn.h:
void addToColumn(int arr[][5], int numRows, int colNum, int numToAdd);

Example:

Given array A[5][5] where:
A = {{1,0,0,0,0},
 {0,1,0,0,0},
 {0,0,1,0,0},
 {0,0,0,1,0},
 {0,0,0,0,1}}

After calling addToColumn:
 addToColumn(A, 5, 2, 1);

Array A will contain:
A = {{1,0,1,0,0},
 {0,1,1,0,0},
 {0,0,2,0,0},
 {0,0,1,1,0},
 {0,0,1,0,1}}

Solution:
#include "addToColumn.h"
void addToColumn(int arr[][NUM_COLS],int numRows,int colNum,int numToAdd) {
// check for bad input before starting
// ***
// For Quiz, no marks lost if did not do check
// ***
if (arr != nullptr)
 if (numRows > 0)
 if ((colNum >= 0) && (colNum < 5))

 // Valid input
 // Loop through each row adding numToAdd
 // *************************************
 for(int row=0; row<numRows; row++)
 arr[row][colNum] += numToAdd;
}

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

8

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

3. Practice with Dynamic Arrays as Return Values 20 Marks

(a) helloName
Given a C string parameter called name, e.g. "Bob", return a greeting of the
form "Hello Bob!".

Remember that C strings must be null terminated, so the above string would
contain the four chars: name[0]='B', name[1]='o'; name[2]='b'; name[3]=0; Your
function will accept a C string that is null terminated, and must return a new
dynamic char array that is also null terminated.

Your function must have the following signature:
char* helloName(const char name[]);

For example:
helloName("Bob") → "Hello Bob!"
helloName("Alice") → "Hello Alice!"
helloName("X") → "Hello X!"
helloName(nullptr) → "Hello !"

Solution:
#include <cstring>
#include "helloName.h"

char* helloName(const char name[]) {
 // set len=0 in case name equals nullptr
 int len = 0;

 // don’t call strlen if name==nullptr
 if (name != nullptr)
 len = strlen(name);

 // Allocate enough chars for retStr
 char *retStr = new char[len+8];

 // Use strcpy because retstr is not yet
 // initialized. strcat may fail if used.
 strcpy(retStr, "Hello ");

 // cat name if it was not nullptr
 if (name != nullptr)
 strcpy(retStr+6, name);

 // Complete answer by adding the "!" string
 strcpy(retStr+len+6, "!");

 // return completed retStr to caller
 return retStr;
}

Cmpt 135

Assignment 3:Solutions to Part A

Mar 11th 2016
Due: Mar 29th 11:59pm

9

Instructor: Scott Kristjanson Wk10

TA: Wenqiang Peng Version 1.2

Alternate Solution:

char* helloName_v2(const char name[]) {
 // set len=0 in case name equals nullptr
 int len = 0;

 // don’t call strlen if name==nullptr
 if (name != nullptr)
 len = strlen(name);

 // Allocate enough chars for retStr
 char *retStr = new char[len+8];

 // Use strcpy for "Hello " because
 // retStr memory is not zeroed
 strcpy(retStr, "Hello ");

 // cat name if it was not nullptr
 if (name != nullptr)
 strcat(retStr, name);

 // Complete answer by adding the "!" string
 strcat(retStr, "!");

 // return completed retStr to caller
 return retStr;
}

Remaining Solutions
can be found in CourSys

