
CMPT 354
Database Systems

Simon Fraser University

Fall 2016

Instructor: Oliver Schulte

Assignment 3a: Application Development, Chapters 6 and 7.

Instructions: Check the instructions in the syllabus. The university policy on academic
dishonesty and plagiarism (cheating) will be taken very seriously in this course.
Everything submitted should be your own writing or coding. You must not let other
students copy your work. On your assignment, put down your name, the number of the
assignment and the number of the course. Spelling and grammar count.

Group Work: Discussions of the assignment is okay, for example to understand the
concepts involved. If you work in a group, put down the name of all members of your
group. There should be no group submissions. Each group member should write up their
own solution to show their own understanding.

For the due date please see our course management server https://courses.cs.sfu.ca .

Additional instructions for what to submit appear in a separate file on the course website.

There will be no email support for this assignment. Start early and ask your questions
in class, office hours, or team up with classmates. You can use the discussion forum on
courses.cs.sfu.ca .

Systems Issues.

Systems Support. The purpose of this assignment is to give you experience with writing
programs that interact with a database management system. You will learn hardly
anything from typing in someone else’s instructions; you will learn a lot from getting the
system to work on your own. Therefore we provide minimal support for getting things to
work on your own system. I suggest you get started on this assignment early to check
your basic system setup.

• System Requirements. Our basic requirement is that we should be able to run
your solution on the CSIL server. This means that you should use one of the
development setups available in CSIL. That’s the only constraint. For a list of
what’s available in CSIL, see http://www.cs.sfu.ca/cc/CSILPC/software.html .
General info about CSIL is posted at http://www.cs.sfu.ca/cc/Labs/. You can of
course develop your solution on your home system and then test it on the CSIL
set-up. Tip: Ask a friend to run your code on CSIL so you know someone else can
run it with their settings. A few suggestions for planning your work.

1. The basic architecture required for the assignment is a client-server architecture

where the client functions provide an interface for accepting user input, and the
server is the SQL server. The program structures required are simple, so the main
new challenges for you are a) the presentation layer and b) the interaction with the
server. You may want to choose a development set-up that makes this as easy as
possible. I list some of the common environments used by students, starting with
the easiest first.

a. Python. The CSIL Python installation comes with the database package
you need (see slides). You just need to import it. This is by far the easiest
for students. One student wrote that: “Time to do this assignment in Java –
infinite. Time to do it in Python – 15 min”.

b. Visual Studio provides a graphical interface for creating forms, buttons
etc. We also provide some support by way of example code and a flash
video for it. If you are used to Java programming, but not to creating
forms for user input or connecting to the database server, your best bet is
probably to use Visual C#: writing code is easy to learn and Visual Studio
simplifies the client-server tasks.

c. Java.

2. In addition to examples and general principles covered in the class and the text,
there is much documentation available with the common development tools, such
as Visual Studio and in on-line discussion. You should not look for the specific
solution, but feel free to look for general information (e.g., “what does this menu
do?”, or go through the Beginner’s Development Tutorial in Visual Studio).

3. One of the most finicky and system-dependent parts is establishing a connection
between your application and your SQL server. We will provide sample
instructions for one system (full Visual Basic), but it’s up to you to find out how

to establish a connection with your system (e.g. VB Express, JDBC.) Establishing
a connection may be the part that takes the most time.

For all questions, use the AdventureWorksLT database.

Part I. Database Connection. 10 points.

Create a new application. When the application is run, the following should happen.

a) Calculate how many customers there are in the AdventureWorks database via
a SQL query to the database.

b) Write to the screen how many customers there are.

Grading Criteria.

• Code + Connection: 40%.
• Query: 30%.
• Output: 30%.

Requirements

• Machine Environment: Your program should run on leto.csil.sfu.ca. Note: If you
developed on your own system or via remote access, you may have to recompile your
files on leto.
• Please include a readme file with instructions for running your code (e.g., open Visual

Studio, open the project file “myproject”, run it using Visual Studio…).
• Your application should connect to your own account on cypress.
• Your username and password (for the CSIL SQL server) should be in your code, so
that the user doesn't have to enter them. To connect to the CSIL SQL server, currently
Cypress, you will need to find out the exact hostname, your username on Cypress, and
your password on Cypress. You can find this out using the CSIL instructions emailed
earlier. One useful webpage is http://www.cs.sfu.ca/about/school-
facilities/csil/windows/how-to-use-sql.html.
• Include supporting files if needed. (like any dll, jar or class files).

II. Stored Procedures/Functions. 10 points.

1. Write SQL code for a stored procedure (function) AverageCost that takes as input
parameter a color and returns the average StandardCost of the products in the
Product table that have that color. Execute the SQL code to create the stored
procedure.

2. Create a new application. When the application is run, the application should
write to the screen what the average StandardCost of red products in the Product
table is. The answer should be computed by calling the stored procedure that you
wrote for part II.1.

Grading Criteria.

• SQL code + creating stored procedure: 50%
• Application + output: 50%.

General Grading Criteria.

• Code design and documentation are part of the criteria. Remember that your TA may

not be an expert in the development system you are using. The code required is so
short that having an explanatory comment for each line is not overdoing it. In fact,
it’s a good habit to acquire.

• Your code should run in the CSIL environment so we can run it if necessary.
However, if we have to check it out by running it, your documentation is probably
insufficient.

What to Submit

Part I: Database Connection. Submit the following files.

• Your source code sourceI.*, where * is the file extension required for your
development setup. Please include supporting files if needed (like any dll, jar or
class files). Your code should be self-contained. If your code comprises several
files, please combine them into a single file sourceI.zip.

• A readme file with instructions for how to run your code on leto.csil.sfu.ca . Call
this file readmeI.rtf .

• A screenshot of the output from running your application. Call this file
outputI.pdf .

Put all these files together into a single archive called solutionI.zip .

Part II: Stored Procedures/Functions. Submit the following files.

• For the SQL code a single sql script. This should execute without error on SQL

Server. Call this file sqlII.sql .
• Your source code sourceII.*, where * is the file extension required for your

development setup. If your code comprises several files, please combine them
into a single file sourceII.zip.

• A readme file with instructions for how to run your code on leto.csil.sfu.ca . Call this
file readmeII.rtf .

• A screenshot of the output from running your application. Call this file outputII.pdf .

Put all these files together into a single archive called solutionI.zip .

