CMPT307: Matroids

Week 9-1, 9-2

Xian Qiu

Simon Fraser University

Independent Set System

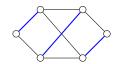
Definition

Let S be a finite set and let $\mathcal{I}\subseteq 2^S$. (S,\mathcal{I}) is an independent set system if (C1) $\emptyset\in\mathcal{I}$; non-emptiness (C2) If $I\in\mathcal{I}$ and $J\subseteq I$, then $J\in\mathcal{I}$.

 $I \in \mathcal{I}$ is an independent set, otherwise called a dependent set

examples

$$\triangleright S = \{1, 2, \dots, n\} \text{ and } \mathcal{I} = \{|I| \le 10\}$$



MWIS Problems

Maximum Weight Independent Set (MWIS) problem

- $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ given (S,\mathcal{I}) and weight function $w:S o\mathbb{R}$
- $\,\,\,\,\,\,\,\,\,\,\,\,\,$ find $I\in\mathcal{I}$, maximizing $w(I)=\sum_{x\in I}w(x)$

Maximum Weight Matching

- \triangleright given graph G=(V,E) and weight w_e for all $e\in E$
- ▷ find a maximum weight matching
- $\triangleright \langle E, \mathcal{M} \rangle$ is an independent set system
- $hd \ \operatorname{arg\,max}_{I\in\mathcal{I}}w(I)\Leftrightarrow\operatorname{\mathsf{max}}\ \operatorname{\mathsf{weight}}\ \operatorname{\mathsf{matching}}$

MWIS Problems

Shortest path

- \triangleright given digraph G=(V,E) and $s,t\in V$ and distances c_e for all $e\in E$
- \triangleright find a shortest s-t path
- $\, \triangleright \,$ assume $(u,v) \in E, \forall u,v \in V,$ otherwise add an edge (u,v) and set $c_{(u,v)} = \infty$
- $\triangleright \langle E, \mathcal{P} \rangle : \mathcal{P} = \{ P \mid P \text{ induces an } s\text{-}t \text{ path} \}$

Maximum weight forest

- \triangleright given G = (V, E) and weight w_e for all $e \in E$
- ▷ find a maximum weight forest
- $\triangleright \langle E, \mathcal{F} \rangle : \mathcal{F} = \{ F \mid F \text{ induces a forest in } G \}$

Greedy Algorithms

Greedy for maximum weight matching

```
1 while E \neq \emptyset do

2 e = \arg\max_{e \in E} w_e;

3 if M + e is matching then

4 M = M + e; // M is empty in initial

5 E = E - e;
```


Greedy for shortest path

1 starting from s, walk through shortest edge at every step until reaching t;

Greedy Algorithms

Greedy for maximum weight forest

```
1 while E \neq \emptyset do
      e = \arg \max_{e \in E} w_e;
2
      if F + e is forest then
3
       F = F + e;
                                                      // F is empty in initial
     E = E - e;
```

▶ we can not find a counterexample (this one could be correct?)

Question

For any problem that is in the class of MWIS problem, under what conditions the greedy algorithm can solve it?

Matroid

Definition

An independent set system (S, \mathcal{I}) is a matroid if

(C3) If
$$I, J \in \mathcal{I}$$
, $|I| < |J|$, then $I + x \in \mathcal{I}$ for some $x \in J \setminus I$.

exchange

Uniform matroid

$$S = \text{any countable set}, \ \mathcal{I} = \{I \subseteq S \mid |I| \le k\}.$$

Partition matroid

S is partitioned into m sets S_1, \dots, S_m . Given m integers k_1, \dots, k_m , define $\mathcal{I} = \{ I \subseteq S \mid |I \cap S_i| \le k_i, i = 1, \cdots, m \}.$

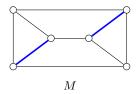
- \triangleright for |I| < |J|, exists i s.t. $|J \cap S_i| > |I \cap S_i|$
- \triangleright let $x \in S_i \cap (J \setminus I)$, hence $I + x \in \mathcal{I}$

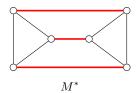
Basis

Definition

 $B\subseteq S$ is called a basis if B is inclusion-wise maximal independent set of S, i.e., $B\in \mathcal{I}$ there is no $I\in \mathcal{I}$ with $B\subset I\subseteq S$.

- \triangleright basis B cannot be extended by adding elements from $S \backslash B$
- \triangleright consider independent set system $\langle E, \mathcal{M} \rangle$





both M and M^* are bases of E

Basis

(C3) If
$$I, J \in \mathcal{I}$$
, $|I| < |J|$, then $I + x \in \mathcal{I}$ for some $x \in J \setminus I$

(C4) $\forall U \subseteq S$, all bases of U have the same size

Lemma. (C3) and (C4) are equivalent.

Proof

(C3
$$\Rightarrow$$
 C4) let B_1, B_2 be two bases and assume $|B_1| < |B_2|$

$$\triangleright$$
 by (C3), $\exists x \in B_2 \backslash B_1$ s.t. $B_1 + x \in \mathcal{I}$

contradiction

(C4
$$\Rightarrow$$
 C3) consider $I, J \in \mathcal{I}$ with $|I| < |J|$

- ightarrow assume $I+x \not\in \mathcal{I}$ for all $x \in J \backslash I$
- $\,\,\,\,\,\,\,\,\,$ then I must be a basis of $I \cup J$
- \triangleright since $J \subseteq I \cup J$, by (C4) $|I| \ge |J|$, a contradiction

Rank

- ightharpoonup rank of matroid (S,\mathcal{I}) : r(S)=|B|, where B is a basis of S

Graphic matroid

Given G = (V, E), let S = E and $\mathcal{I} = \{ F \subseteq E \mid F \text{ induces a forest in } G \}$.

(C4): $\forall U \subseteq E$, let G' be induced by U, with k components

- \triangleright let $B \subseteq U$ be any basis
- $\triangleright B$ contains k spanning trees
- $\triangleright |B| = |V| k$

Greedy for Matroids

MWIS problem

Given an independent set system (S,\mathcal{I}) and a nonnegative weight function $w:S\to\mathbb{R}^+$, find a maximum weight independent set $I\in\mathcal{I}$.

GREEDY

- 1 initialize: $I = \emptyset$;
- 2 while $\exists x \in S \backslash I$ with $I + x \in \mathcal{I}$ do
- choose x with w(x) maximum;
 - I = I + x;

Theorem

GREEDY computes an independent set of maximum weight if and only if (S, \mathcal{I}) is a matroid.

← Proof of Sufficiency

assumptions

- $\, \triangleright \, X = \text{greedy solution and} \, \, Y = \text{optimal solution} \,$
 - $\Rightarrow X$ and Y are bases of $S \Rightarrow |X| = |Y|$

$$X = \{x_1, \dots, x_m\}, \quad Y = \{y_1, \dots, y_m\}$$

$$w(x_1) \ge \dots \ge w(x_m), \quad w(y_1) \ge \dots \ge w(y_m)$$

to show: $w(x_i) \ge w(y_i)$ for all i

- \triangleright let k+1 be smallest index s.t. $w(x_{k+1}) < w(y_{k+1})$
- \triangleright define $I = \{x_1, \cdots, x_k\}$ and $J = \{y_1, \cdots, y_{k+1}\}$
- \triangleright as |I| < |J|, by (C3) $\Rightarrow \exists y_i \in J \setminus I \text{ s.t. } I + y_i \in \mathcal{I}$
- \triangleright note $w(y_i) \ge w(y_{k+1}) > w(x_{k+1})$
- \triangleright thus in step k+1, greedy will choose y_i instead of x_{k+1} , a contradiction!

⇒ Proof of Necessity

know: greedy computes a max-weight independent set $I \in \mathcal{I}$ to show: (S,\mathcal{I}) is a matroid

- $\verb| (C3) by contradiction: assume $I,J\in\mathcal{I}$, $|I|<|J|$ and $I+x\not\in\mathcal{I}$ for every $x\in J\backslash I$$
- \triangleright let k = |I| and define a weight function w:

$$w(x) = \begin{cases} k+2, & \text{if } x \in I \\ k+1, & \text{if } x \in J \setminus I \\ 0, & \text{otherwise} \end{cases}$$

- \triangleright greedy picks all $x \in I$ in the first k steps and terminates (as $I + x \notin \mathcal{I}$), yielding w(I) = k(k+2)
- \triangleright but $w(J) \ge (k+1)|J| \ge (k+1)^2 > w(I)$, a contradiction!