CMPT307: Greedy Algorithms

Week 8-1

Xian Qiu

Simon Fraser University



> remarks on dynamic programming

> greedy algorithms

@ SFU X.Qiu 2 Of 13



Overlapping Subproblems

recall the rod cutting problem and its recursive formula

rp = max {p; +rn—i}
<n

O AN

> the number of nodes (problems) in recursion tree is 2"

> but the number of distinct problems is n 4 1

@ SFU X.Qiu 3 Of 13



Remarks on DP

> DP is applicable for optimization problems with many
overlapping subproblems

> DP is essentially brute force, which saves the time for
repeatedly computing overlapping subproblems

> carefully use cut-and-paste argument (cf. s.8-9, week 7-2)

> unapplicable example: maximum subarray (cf. s.7, week 4-1)
no overlapping subproblems

® sru X.Qiu



An Activity Selection Problem

> n activities use the same resource, e.g., lecture hall, which
serves one activity at a time

> each activity ¢ has a start time s; and finish time f;

> goal: select a maximum number of compatible activities

O O O O
Oo—0 Oo—0 Oo—0
Oo—-0 Oo———0 Oo——0
O

> what is a greedy strategy?

earliest start time first or earliest finish time first?

@ SFU X.Qiu 5 Of 13



Earliest Finish Time First

AcCTIVITY-EARLIEST-FINISH-TIME-FIRST(s, f)

1 sort activities w.r.t. finish time, ie. f[1] < f[2] <... < f[n];

2 A={1};

3 k=1, // activity with lastest finish time in A
4 fori=2ton do

5 if s[i] > f[k] then

6 A=AU{i};

7 L k =1;

8 return A;

@ SFU X.Qiu 6 Of 13



Correctness

> assume greedy = i1,...,is and OPT = {j,

..,jt}Witht>S
fio < fir < < i
fj1 Sfj2 < Sfjt
> assume 7 is the first index s.t. i, # j,

> by greedy choice, we know f; < f;,

> replacing j, by i, in OPT yields another optimal solution

OPTl = {ilw . 'ai’r’v.j’r'-‘rlv .. 7jt}7

> by induction, we can show that iy =j, forl =1,...,s
> greedy must also select jsi1,...,Jt, as they are compatible
with {i1,...,is}, thereby implying t = s
® srFu

X.Qiu AEEE



Dynamic Programming

order activities according to finish time, ie. f; < ... < f,

consider OPT for instance S;;: activities starting after f; and
finishing before s;(i < j)
OPT ;g OPT;W-
OPT } : : {
fi Sk fk Sj

optimal substructure: OPT;;, and OPTy; are optimal for S;;, and
Sk; respectively

cli, j] := opt. objective = ¢[i, k] + c[k, j] + 1

m SFU X.Qiu 8 Of 13



Dynamic Programming

recursive formula

C[i,j] _ {:)naxkesiyj {C[i, k] + C[k,j] + 1}, g” f g
) i —

opt = ¢[0,n + 1], where fo =0 and s,+1 = fn
running time: O(n?)

> worse than ACTIVITY-EARLIEST-FINISH-TIME-FIRST
> but better than brute force O(2")

improvement: to reduce subproblems
we do not need to find k by brute force

@ SFU X.Qiu 9 Of 13



Reducing Subproblems

Lemma

Consider any subproblem S;; and there exists an optimal solution choosing an
activity m € Si; with minimum finish time.

cli, j] = ¢[m, j] + 1 and opt = ¢[0,n + 1]

> O(n) subproblems!
running time O(n), excluding the time for sorting

> let Sy = {i| s; > fx}: choose activity 1, then consider Sy;
choose activity ¢, then consider S; until some & with S = ()

(U] SFU X.Qiu 10 of 13



Proof of the Lemma

let s € OPT be the activity with minimum finish time

fi fm Sj
also assume that any OPT does not select m

replacing s by m in OPT vyields another optimal solution OPTy, a
contradiction! need to check that OPT; is feasible!

(U] SFU X.Qiu 11 of 13



> assume f1 < fo... < f,
> let fo =0, thus Sp ={1,...,n}
> RECURSIVE-ACTIVITY-SELECTOR(S, f,0) returns OPT

RECURSIVE-ACTIVITY-SELECTOR(S, f, k)

1 m=%k+1;
2 while m <n and s[m] < f[k] do
3 | m=m+1; // find m € S, with min finish time

4 if m <n then
5 L return {m} U RECURSIVE-ACTIVITY-SELECTOR(S, f, m);

6 else
7 L return (; // m >n implies Sy =, then terminates

(U] SFU X.Qiu 12 of 13



Greedy Paradigm

Direct greedy

1. develop a greedy strategy by intuition: always making locally optimal
choices

2. prove the correctness by contradiction

Greedy via Dynamic Programming

1. determine the optimal substructure

2. develop a recursive solution

3. greedy choice yields only one subproblem
4. obtain a greedy algorithm

(U] SFU X.Qiu 13 of 13



	Remarks on DP
	Activity Selection

