
CMPT307: Greedy Algorithms
Week 8-1

Xian Qiu

Simon Fraser University

xianq@sfu.ca



Outline

. remarks on dynamic programming

. greedy algorithms

2 of 13X.QiuSFUU



Overlapping Subproblems

recall the rod cutting problem and its recursive formula

rn = max
1≤i≤n

{pi + rn−i}

n

n− 1 n− 2 · · · 0

n− 2 · · · 0 n− 3 · · ·0

. the number of nodes (problems) in recursion tree is 2n

. but the number of distinct problems is n+ 1

3 of 13X.QiuSFUU



Remarks on DP

. DP is applicable for optimization problems with many
overlapping subproblems

. DP is essentially brute force, which saves the time for
repeatedly computing overlapping subproblems

. carefully use cut-and-paste argument (cf. s.8-9, week 7-2)

. unapplicable example: maximum subarray (cf. s.7, week 4-1)
no overlapping subproblems

4 of 13X.QiuSFUU



An Activity Selection Problem

. n activities use the same resource, e.g., lecture hall, which
serves one activity at a time

. each activity i has a start time si and finish time fi

. goal: select a maximum number of compatible activities

. what is a greedy strategy?

earliest start time first or earliest finish time first?

5 of 13X.QiuSFUU



Earliest Finish Time First

Activity-Earliest-Finish-Time-First(s, f)

1 sort activities w.r.t. finish time, i.e. f [1] ≤ f [2] ≤ . . . ≤ f [n];
2 A = {1};
3 k = 1; // activity with lastest finish time in A
4 for i = 2 to n do
5 if s[i] ≥ f [k] then
6 A = A ∪ {i};
7 k = i;

8 return A;

6 of 13X.QiuSFUU



Correctness

. assume greedy = i1, . . . , is and OPT = {j1, . . . , jt} with t > s

fi1 ≤ fi2 ≤ . . . ≤ fis

fj1 ≤ fj2 ≤ . . . ≤ fjt

. assume r is the first index s.t. ir 6= jr

. by greedy choice, we know fir ≤ fjr

. replacing jr by ir in OPT yields another optimal solution

OPT1 = {i1, . . . , ir, jr+1, . . . , jt} ,

. by induction, we can show that il = jl for l = 1, . . . , s.

. greedy must also select js+1, . . . , jt, as they are compatible
with {i1, . . . , is}, thereby implying t = s

7 of 13X.QiuSFUU



Dynamic Programming

order activities according to finish time, i.e. f1 ≤ . . . ≤ fn

consider OPT for instance Sij : activities starting after fi and
finishing before sj(i < j)

fi sjsk fk
OPT

OPTik OPTkj

optimal substructure: OPTik and OPTkj are optimal for Sik and
Skj respectively

c[i, j] := opt. objective = c[i, k] + c[k, j] + 1

8 of 13X.QiuSFUU



Dynamic Programming

recursive formula

c[i, j] =

{
maxk∈Si,j

{c[i, k] + c[k, j] + 1} , Sij 6= ∅
0, Sij = ∅

opt = c[0, n+ 1], where f0 = 0 and sn+1 = fn

running time: O(n3)

. worse than Activity-Earliest-Finish-Time-First

. but better than brute force O(2n)

improvement: to reduce subproblems
we do not need to find k by brute force

9 of 13X.QiuSFUU



Reducing Subproblems

Lemma

Consider any subproblem Sij and there exists an optimal solution choosing an
activity m ∈ Sij with minimum finish time.

fi sjfm

m
Sij

Smj

c[i, j] = c[m, j] + 1 and opt = c[0, n+ 1]

. O(n) subproblems!
running time O(n), excluding the time for sorting

. let Sk = {i | si ≥ fk}: choose activity 1, then consider S1;
choose activity t, then consider St until some k with Sk = ∅

10 of 13X.QiuSFUU



Proof of the Lemma

let s ∈ OPT be the activity with minimum finish time

fi sjfm

mSij

s

also assume that any OPT does not select m

replacing s by m in OPT yields another optimal solution OPT1, a
contradiction! need to check that OPT1 is feasible!

11 of 13X.QiuSFUU



Pseudocode

. assume f1 ≤ f2 . . . ≤ fn

. let f0 = 0, thus S0 = {1, . . . , n}

. Recursive-Activity-Selector(s, f, 0) returns OPT

Recursive-Activity-Selector(s, f, k)

1 m = k + 1;
2 while m ≤ n and s[m] < f [k] do
3 m = m+ 1; // find m ∈ Sk with min finish time

4 if m ≤ n then
5 return {m} ∪Recursive-Activity-Selector(s, f,m);

6 else
7 return ∅; // m > n implies Sk = ∅, then terminates

12 of 13X.QiuSFUU



Greedy Paradigm

Direct greedy

1. develop a greedy strategy by intuition: always making locally optimal
choices

2. prove the correctness by contradiction

Greedy via Dynamic Programming

1. determine the optimal substructure

2. develop a recursive solution

3. greedy choice yields only one subproblem

4. obtain a greedy algorithm

13 of 13X.QiuSFUU


	Remarks on DP
	Activity Selection

