CMPT307: Greedy Algorithms

Week 8-1

Xian Qiu

Simon Fraser University

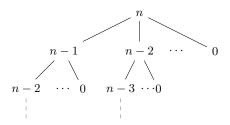
Outline

- ▷ remarks on dynamic programming
- ▷ greedy algorithms

Overlapping Subproblems

recall the rod cutting problem and its recursive formula

$$r_n = \max_{1 \le i \le n} \left\{ p_i + r_{n-i} \right\}$$



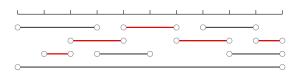
- \triangleright the number of nodes (problems) in recursion tree is 2^n
- \triangleright but the number of distinct problems is n+1

Remarks on DP

- ▷ DP is applicable for optimization problems with many overlapping subproblems
- DP is essentially brute force, which saves the time for repeatedly computing overlapping subproblems
- ▷ carefully use cut-and-paste argument (cf. s.8-9, week 7-2)
- □ unapplicable example: maximum subarray (cf. s.7, week 4-1)
 no overlapping subproblems

An Activity Selection Problem

- \triangleright n activities use the same resource, e.g., lecture hall, which serves one activity at a time
- \triangleright each activity i has a start time s_i and finish time f_i



▶ what is a greedy strategy? earliest start time first or earliest finish time first?

Earliest Finish Time First

ACTIVITY-EARLIEST-FINISH-TIME-FIRST(s, f)

```
1 sort activities w.r.t. finish time, i.e. f[1] \leq f[2] \leq \ldots \leq f[n];
2 A = \{1\};
3 k = 1; // activity with lastest finish time in A
4 for i = 2 to n do
5 | if s[i] \geq f[k] then
6 | A = A \cup \{i\};
7 | k = i;
8 return A;
```

Correctness

 $\,dash\,$ assume greedy $=i_1,\ldots,i_s$ and $\mathsf{OPT}=\{j_1,\ldots,j_t\}$ with t>s

$$f_{i_1} \le f_{i_2} \le \dots \le f_{i_s}$$

$$f_{j_1} \le f_{j_2} \le \dots \le f_{j_t}$$

- \triangleright assume r is the first index s.t. $i_r \neq j_r$
- \triangleright by greedy choice, we know $f_{i_r} \leq f_{j_r}$

$$\mathsf{OPT}_1 = \{i_1, \dots, i_r, j_{r+1}, \dots, j_t\},\$$

- \triangleright by induction, we can show that $i_l = j_l$ for $l = 1, \dots, s$.
- \triangleright greedy must also select j_{s+1}, \ldots, j_t , as they are compatible with $\{i_1, \ldots, i_s\}$, thereby implying t=s

Dynamic Programming

order activities according to finish time, i.e. $f_1 \leq \ldots \leq f_n$

consider OPT for instance S_{ij} : activities starting after f_i and finishing before $s_j (i < j)$

optimal substructure: OPT_{ik} and OPT_{kj} are optimal for S_{ik} and S_{kj} respectively

$$c[i,j] := \text{opt. objective} = c[i,k] + c[k,j] + 1$$

Dynamic Programming

recursive formula

$$c[i,j] = \begin{cases} \max_{k \in S_{i,j}} \left\{ c[i,k] + c[k,j] + 1 \right\}, & S_{ij} \neq \emptyset \\ 0, & S_{ij} = \emptyset \end{cases}$$
 opt $= c[0,n+1]$, where $f_0 = 0$ and $s_{n+1} = f_n$

running time: $O(n^3)$

- ▶ worse than ACTIVITY-EARLIEST-FINISH-TIME-FIRST.
- \triangleright but better than brute force $O(2^n)$

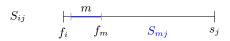
improvement: to reduce subproblems

we do not need to find k by brute force

Reducing Subproblems

Lemma

Consider any subproblem S_{ij} and there exists an optimal solution choosing an activity $m \in S_{ij}$ with minimum finish time.



$$c[i,j] = c[m,j] + 1$$
 and opt $= c[0,n+1]$

- $\triangleright O(n)$ subproblems! running time O(n), excluding the time for sorting
- \triangleright let $S_k = \{i \mid s_i \geq f_k\}$: choose activity 1, then consider S_1 ; choose activity t, then consider S_t until some k with $S_k = \emptyset$

Proof of the Lemma

let $s \in \mathsf{OPT}$ be the activity with minimum finish time

$$S_{ij}$$
 $\begin{array}{c} & \stackrel{S}{\longleftarrow} \\ & \stackrel{m}{\longleftarrow} \\ f_i & f_m \end{array}$
 S_{ij}

also assume that any OPT does not select m

replacing s by m in OPT yields another optimal solution OPT₁, a contradiction! need to check that OPT₁ is feasible!

Pseudocode

- ightharpoonup assume $f_1 \leq f_2 \ldots \leq f_n$ ho let $f_0 = 0$, thus $S_0 = \{1, \ldots, n\}$
- \triangleright RECURSIVE-ACTIVITY-SELECTOR(s, f, 0) returns OPT

RECURSIVE-ACTIVITY-SELECTOR(s, f, k)

```
2 while m \leq n and s[m] < f[k] do 

3 \lfloor m = m + 1; // find m \in S_k with min finish time 

4 if m \leq n then 

5 \lfloor \text{return } \{m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m); 

6 else 

7 \mid \text{return } \emptyset; // m > n implies S_k = \emptyset, then terminates
```

1 m = k + 1:

Greedy Paradigm

Direct greedy

- develop a greedy strategy by intuition: always making locally optimal choices
- 2. prove the correctness by contradiction

Greedy via Dynamic Programming

- 1. determine the optimal substructure
- 2. develop a recursive solution
- 3. greedy choice yields only one subproblem
- 4. obtain a greedy algorithm