CMPT307: Dynamic Programming

Week 7-3

Xian Qiu

Simon Fraser University

- ▷ longest common subsequence
- ▷ optimal binary search tree

Subsequence

 $\triangleright X = \langle x_1, \dots, x_m \rangle$ is a sequence of characters $\triangleright Z = \langle z_1, \dots, z_k \rangle$ is a subseqence of X if each $z_i \in X$ and Z "preserves" the order of X

Example

 $Z = \langle B, C, C, A \rangle$ is a subsequence of $X = \langle A, B, C, D, C, B, A \rangle$.

 $\triangleright~Z$ is a common subsequence of X,Y if Z is a subsequence of both X and Y

Example

$$\begin{split} Z = \langle B, D, A \rangle \text{ is a common subsequence of} \\ X = \langle A, B, C, D, C, B, A \rangle \,, \quad Y = \langle D, B, C, A, C, D, A \rangle \,. \end{split}$$

Longest common subsequence

- \triangleright input: sequences X and Y, of lengths m and n respectively
- $\triangleright\;$ output: longest common subsequence of X and Y
- ▷ application in computational biology: X, Y stand for DNA strings over a finite set {A,C,G,T}
 - $X = \mathsf{ACCGGTCGAGTGCGCGGAAGCCGGCCGAA}$
 - $Y = \mathsf{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$
- $\triangleright\,$ use longest common subsequence to determine the similarity of X and Y

$$X_m = \langle x_1, \dots, x_m \rangle, \ Y_n = \langle y_1, \dots, y_n \rangle \quad \mathsf{OPT} = Z_k = \langle z_1, \dots, z_k \rangle$$

idea: compare z_k with x_m and y_n respectively

case 1: $z_k = x_m = y_n$ $\triangleright Z_{k-1}$ is an LCS of X_{m-1} and Y_{n-1} case 2: $z_k \neq x_m$ $\triangleright Z_k$ is an LCS of X_{m-1} and Y_n case 3: $z_k \neq y_n$ $\triangleright Z_k$ is an LCS of X_m and Y_{n-1}

define c[i, j] = length of LCS of X_i and Y_j

assume i, j > 0 and recall the three cases:

case 1: $x_i = x_j$ $\triangleright \ c[i, j] = c[i - 1, j - 1] + 1$ case 2: $x_i \neq x_j$ $\triangleright \ c[i, j] = \max \{ c[i - 1, j], c[i, j - 1] \}$

if i = 0 or j = 0, then c[i, j] = 0

Running Time

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j\\ \max{c[i,j-1], c[i-1,j]} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

 \triangleright depth: O(mn) subproblems

- \triangleright width: O(1) time to compute c[i, j]
- \triangleright running time O(mn)

how to construct the optimal solution?

$$\triangleright$$
 use $b[i,j]$ to record the three cases

Pseudocode

LCS-LENGTH(X,Y)

$$\begin{array}{c|c} 1 & c[i,0] = c[0,j] = 0, \ i = 1, \dots, m \ \text{and} \ j = 1, \dots, n; \\ 2 & \text{for} \ i = 1 \ to \ m \ \text{do} \\ 3 & \text{for} \ j = 1 \ to \ n \ \text{do} \\ 4 & \text{if} \ x_i == y_j \ \text{then} \\ 5 & \text{if} \ x_i == y_j \ \text{then} \\ & \begin{bmatrix} c[i,j] = c[i-1,j-1] + 1; \\ b[i,j] = ``\]; \\ else \ \text{if} \ c[i,j] = c[i-1,j]; \\ b[i,j] = ``(\]; \\ b[i,j] = ``(\]; \\ b[i,j] = ``(\]; \\ else \\ & \begin{bmatrix} c[i,j] = c[i-1,j]; \\ b[i,j] = ``(\]; \\ b[i,j] = ``(\]; \\ b[i,j] = ``(\]; \\ b[i,j] = ``(\]; \\ \end{array} \right)$$

13 return m and s;

Example

English	hello	good	bad	morning	molecule	
French	bonjour	bien	mal	matin	molécule	• • •

- $\triangleright~\mathsf{English}=\mathsf{key},\,\mathsf{French}=\mathsf{value}$ and build a binary search tree
- some English words may have no French translation (so they do not appear in binary search tree)
- \triangleright search time = $O(\log n)$ for red-black tree
- ▷ words have different frequencies
- ▷ goal: minimize the running time of all searches

Optimal BST

- \triangleright a sequence $K=\langle k_1,\ldots,k_n\rangle$ of n distinct keys in sorted order, i.e. $k_1<\ldots< k_n$
- $\triangleright p_i$ is the probability of searching k_i
- \triangleright introduce dummy keys d_0,\ldots,d_k for searches not in K , where $d_{i-1} < k_i < d_i$ for $i=1,\ldots,k$
- $arphi \ q_i$ is the probability for a dummy key $i \ (i=0,\ldots,n)$
- $\triangleright\,$ the total probability is one, i.e., $\sum_{i=1}^n p_i + \sum_{i=0}^n q_i = 1$
- \triangleright search cost of T

$$C_T := \sum_{v \in T} C_v, \text{ where } C_v = \text{ search cost of } v$$

 \triangleright goal: $\min_T \mathbb{E}[C_T]$

X.Qiu (11 of 15)

Example

- > all leaves are dummy keys and vice versa
- $\triangleright \mathbb{E}(C_T) = 2.8$ not optimal
- \triangleright T is an optimal binary search tree if $\mathbb{E}(C_T)$ is minimum

O SFU

X.Qiu (12 of 15)

Lemma

Let T' be a subtree of OPT, with keys k_i, \ldots, k_j . Then T' is optimal for the subproblem with keys k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_j .

Recursive Solution

f(i, j) := optimal value for the instance with keys k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_j

let $w(i,j) = \sum_{l=i}^{j} p_l + \sum_{i=1}^{j} q_l$ = total probability

 $f(i,j) = p_r + f(i,r-1) + w(i,r-1) + f(r+1,j) + w(r+1,j)$ = f(i,r-1) + f(r+1,j) + w(i,j)

find an optimal r by brute force!

X.Qiu 14 of 15

Recursive Formula

if $j\geq i$: $f(i,j)=\min_{1\leq r\leq j}\left\{f(i,r-1)+f(r+1,j)+w(i,j)\right\}$ if j=i-1: $f(i,j)=q_{i-1}$

- $\triangleright \ f(1,n)$ returns the optimum cost
- ▷ running time?
- ▷ how to construct an optimal BST?

