
CMPT307: Dynamic Programming
Week 7-1

Xian Qiu

Simon Fraser University

xianq@sfu.ca

Rod Cutting

. to cut a rod of length n inches into small pieces

. price is pi, if the piece has length i

. maximize the total price

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 3 5 11 13 17 21 22 23 29

. divide-and-conquer?

. greedy?

. brute force?

2 of 13X.QiuSFUU

Dynamic Programming

1. characterize the structure of an optimal solution
cut-and-paste argument

2. define the optimal value in a recursive way
the running time is estimated accordingly

3. compute the optimal value for the original problem
some indices often need to be searched by brute force

4. construct an optimal solution from computed information
save the indices found in step 3

3 of 13X.QiuSFUU

Optimal Substructure

Optimal substructure

OPT incorporates optimal solutions to independent subproblems.

i0 npi

ROPT

Lemma

The cutting for R in OPT is optimal for subproblem R (with rod size n− i).

cut-and-paste argument

. assume there is a better cutting for R

. using this cutting for R in OPT yields a better solution

4 of 13X.QiuSFUU

Recursive Formula

. let rn be the optimal solution value for rod size n and i be
some cut point in an optimal solution

rn = pi + rn−i, 1 ≤ i ≤ n

. what is the value of i?

rn = max
1≤i≤n

{pi + rn−i} recursive formula

. how to compute rn? straightforward implementation?

5 of 13X.QiuSFUU

Straightforward Implementation

Cut-Rod(p, n)

1 if n == 0 then
2 return 0;

3 q = −∞;
4 for i = 1 to n do
5 q = max {q, p[i] +Cut-Rod(p, n− i)};
6 return q;

. T (n) = 1 +
∑n−1

i=0 T (i) ⇒ T (n) = 2n assume T (0) = 1

. it solves the same subproblems repeatedly!

6 of 13X.QiuSFUU

Recursion Tree

n = 4

4

3 2 1 0

2 1 0 1 0 0

1 0 0 0

0

node label = size of subproblem

7 of 13X.QiuSFUU

Top Down with Memoization

idea: use memory to save computation

top-down with memoization: implement recursively and save the
result for each subproblem

Memoized-Cut-Rod(p, n)

1 r[0..n] = −∞; // use r to save results

2 return Memoized-Cut-Rod-Aux(p, n, r);

8 of 13X.QiuSFUU

Top Down with Memoization

Memoized-Cut-Rod-Aux(p, n, r)

1 if r[n] ≥ 0 then
2 return r[n]; // rn has already been solved

3 if n == 0 then
4 q = 0;

5 else
6 q = −∞;
7 for i = 1 to n do
8 q = max {q, p[i] +Memoized-Cut-Rod-Aux(p, n− i, r)};
9 r[n] = q; // save result

10 return q;

9 of 13X.QiuSFUU

Bottom Up Method

bottom-up: directly solve subproblems and save the results

Bottom-Up-Cut-Rod(p, n)

1 r[0..n] = 0;
// subproblem has rod size j

2 for j = 1 to n do
3 q = −∞;
4 for i = 1 to j do
5 q = max {q, p[i] + r[j − i]};
6 r[j] = q ; // save result

7 return r[n];

10 of 13X.QiuSFUU

Subproblem Graph

4

3

2

1

0

nodes = n + 1

edges = n(n+1)
2

T (n) = Θ(n2)

11 of 13X.QiuSFUU

Reconstructing a Solution

rn = max
1≤i≤n

{pi + rn−i}

. idea: save “index i” for each subproblem

. define s[j] = optimal cut off size, for rod length j

. cut at s[j] and yield new subproblem j − s[j]

1 2 3 4 2 3 3 4 2 1

1 2 3 4 5 6 7 8 9 10

s

rod

n = 10

1

9

2

7

3

4

4

0

12 of 13X.QiuSFUU

Pseudocode

Extended-Bottom-Up-Cut-Rod(p, n)

1 r[0..n] = 0 and s[0..n] = 0;
2 for j = 1 to n do
3 q = −∞;
4 for i = 1 to j do
5 if q < p[i] + r[j − i] then
6 q = p[i] + r[j − i];
7 s[j] = i;

8 r[j] = q;

9 return r and s;

13 of 13X.QiuSFUU

	Rod Cutting

