CMPT307: Dynamic Programming

Week 7-1

Xian Qiu

Simon Fraser University

to cut a rod of length n inches into small pieces

v Vv

price is p;, if the piece has length i

> maximize the total price

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; |1 3 5 11 13 17 21 22 23 29
> divide-and-conquer?
> greedy?
> brute force?

m SFU X.Qiu 2 Of 13

Dynamic Programming

1. characterize the structure of an optimal solution
cut-and-paste argument

2. define the optimal value in a recursive way
the running time is estimated accordingly

3. compute the optimal value for the original problem
some indices often need to be searched by brute force

4. construct an optimal solution from computed information
save the indices found in step 3

@ SFU X.Qiu 3 Of 13

Optimal Substructure

Optimal substructure

OPT incorporates optimal solutions to independent subproblems.

0 pi n

opT (

—|= ===

Lemma

The cutting for R in OPT is optimal for subproblem R (with rod size n — 7).

cut-and-paste argument
> assume there is a better cutting for R

> using this cutting for R in OPT yields a better solution

® SFU X.Qiu

Recursive Formula

> let r,, be the optimal solution value for rod size n and ¢ be
some cut point in an optimal solution

Tn = Pi + Tn—i, 1<i<n
> what is the value of 77

T = max {p; + i} recursive formula
1<i<n

> how to compute r,? straightforward implementation?

@ SFU X.Qiu 5 Of 13

Straightforward Implementation

Cut-RoD(p,n)

1 if n ==0 then
2 L return 0;

3 ¢g=—00
4 fori =1 ton do
5 L g = max {¢, p[i] + CuT-RoD(p,n — 1) };

6 return g;

> T(n) =1+ Y1, TG) = T(n) =2" assume 7'(0) = 1

> it solves the same subproblems repeatedly!

@ SFU X.Qiu 6 Of 13

Recursion Tree

node label = size of subproblem

@ SFU X.Qiu 7 Of 13

Top Down with Memoization

idea: use memory to save computation

top-down with memoization: implement recursively and save the
result for each subproblem

MEMOIZED-CUT-ROD(p, n)

1 r[0..n] = —o0; // use r to save results
2 return MEMOIZED-CUT-ROD-AUX(p, n,7);

@ SFU X.Qiu 8 Of 13

Top Down with Memoization

MEMOI1ZED-CUT-ROD-AUX(p, n, 1)

1 if r[n] > 0 then

2 | return r[n]; // T has already been solved
3 if n ==0 then

4 L q=0;

5 else

6 q= —o0;

7 fori=1 ton do

8 | ¢ = max {g,p[i] + MEMOI1ZED-CUT-ROD-AUX(p, 7 — 4, 1) };

9 r[n] = gq; // save result
10 return g,

@ SFU X.Qiu 9 Of 13

Bottom Up Method

bottom-up: directly solve subproblems and save the results

BoTtTom-Up-CuT-ROD(p, n)

1 r[0.n] =0;
// subproblem has rod size j
for j =1 ton do
q=—00;
for i =1 to j do
| a=max{q,pli] +r[j — i}
rlil=a; // save result

a A W N

o

7 return r[n];

(U] SFU X.Qiu 10 of 13

Subproblem Graph

nodes =n+1

(4)
¢.
‘% # edges = "l

2
? T(n) = ©(n?)

(U] SFU X.Qiu 11 of 13

Reconstructing a Solution

Tn = 112%}(71 {pi + Tn—i}

> idea: save “index ¢" for each subproblem
> define s[j] = optimal cut off size, for rod length j
> cut at s[j] and yield new subproblem j — s[j]

1 2 3 4 5 6 7 8 9 10

o [1]2]s[a]2]s]3]4]2]1]

od | || | |

(U] SFU X.Qiu 12 of 13

EXTENDED-BOTTOM-UP-CUT-ROD(p, 1)

1 r[0..n] =0 and s[0..n] = 0;

2 for j =1 ton do

3 q = —o0;

4 fori=1toj do

5 if ¢ < pli] +r[j —i] then
6 q = pli] +rlj —1l;

7 slj]l = 4

8 | rhl=a

9 return r and s;

(U] SFU X.Qiu 13 of 13

	Rod Cutting

