CMPT307: Dynamic Programming

Week 7-1

Xian Qiu

Simon Fraser University

Rod Cutting

- \triangleright price is p_i , if the piece has length i

- ▷ greedy?
- ▷ brute force?

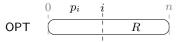
Dynamic Programming

- 1. characterize the structure of an optimal solution cut-and-paste argument
- 2. define the optimal value in a recursive way the running time is estimated accordingly
- 3. compute the optimal value for the original problem some indices often need to be searched by brute force
- 4. construct an optimal solution from computed information save the indices found in step 3

Optimal Substructure

Optimal substructure

OPT incorporates optimal solutions to independent subproblems.



Lemma

The cutting for R in OPT is optimal for subproblem R (with rod size n-i).

cut-and-paste argument

- \triangleright assume there is a better cutting for R
- \triangleright using this cutting for R in OPT yields a better solution

Recursive Formula

 \triangleright let r_n be the optimal solution value for rod size n and i be some cut point in an optimal solution

$$r_n = p_i + r_{n-i}, \quad 1 \le i \le n$$

 \triangleright what is the value of i?

$$r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$$
 recursive formula

 \triangleright how to compute r_n ? straightforward implementation?

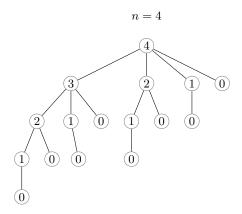
Straightforward Implementation

Cut-Rod(p, n)

$$> T(n) = 1 + \sum_{i=0}^{n-1} T(i) \Rightarrow T(n) = 2^n$$
 assume $T(0) = 1$

▷ it solves the same subproblems repeatedly!

Recursion Tree



 $\mathsf{node}\;\mathsf{label}=\mathsf{size}\;\mathsf{of}\;\mathsf{subproblem}$

Top Down with Memoization

idea: use memory to save computation

top-down with memoization: implement recursively and save the result for each subproblem

Memoized-Cut-Rod(p, n)

```
1 r[0..n] = -\infty; // use r to save results 2 return Memoized-Cut-Rod-Aux(p,n,r);
```

Top Down with Memoization

Memoized-Cut-Rod-Aux(p, n, r)

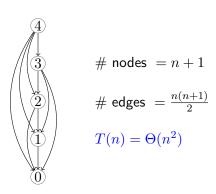
Bottom Up Method

bottom-up: directly solve subproblems and save the results

BOTTOM-UP-CUT-ROD(p, n)

```
1 r[0..n]=0;  
// subproblem has rod size j
2 for j=1 to n do
3  
q=-\infty;  
for i=1 to j do
5  
q=\max\{q,p[i]+r[j-i]\};  
// save result
7 return r[n];
```

Subproblem Graph



Reconstructing a Solution

$$r_n = \max_{1 \le i \le n} \left\{ p_i + r_{n-i} \right\}$$

- \triangleright idea: save "index i" for each subproblem
- \triangleright define s[j] = optimal cut off size, for rod length j
- $\,\vartriangleright\,$ cut at s[j] and yield new subproblem j-s[j]

rod

Pseudocode

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)