CMPT307: Quicksort

Week 5-1

Xian Qiu

Simon Fraser University

Quicksort

 \triangleright divide: rearrange A[p..r] into A[p..q-1] and A[q+1..r] s.t. $A[i] \leq A[q] \leq A[j], \quad \forall p \leq i \leq q-1 \text{ and } q+1 \leq j \leq r$

- \triangleright conquer: sort A[p..q-1] and A[q+1..r] recursively

QUICKSORT(A, p, r)

```
1 if p < r then
 q = \text{PARTITION}(A, p, r);
                                                          // rearrangement
    Quicksort(A, p, q - 1);
     QUICKSORT(A, q + 1, r);
```

Partitioning

- \triangleright select A[r] as pivot
- \triangleright if A[j] < A[r] for $p \le j < r$, color it blue else color it red

p							r
3	8	2	6	1	7	4	5

Pseudocode

Partition(A, p, r)

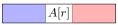
```
1 x=A[r]; // select A[r] as pivot 2 i=p-1; 3 for j=p to r-1 do 4 \qquad if A[j] \leq x then 5 \qquad \qquad exchange A[i] with A[j]; 7 exchange A[i+1] with A[r]; 8 return i+1;
```

Performance

worst-case:
$$A[r] = \max_i A[i]$$

$$T(n) = T(n-1) + T(0) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$$

best-case: A[r] is median

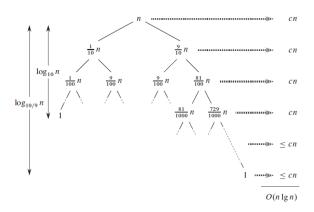


$$T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$$

<u>Performance</u>

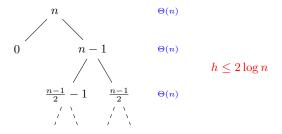
what if slightly better than worst-case? say

$$T(n) = T(9n/10) + T(n/10) + cn$$



Average-Case

- > assume the input is a uniform random permutation
- ▷ Partition produces a mix of "worst" and "best" splits



- \triangleright intuition: $O(n \log n)$
- ▶ what if the assumption does not hold?

Randomized Partition

random sampling

- \triangleright exchange A[r] with A[i] and apply PARTITION;

RANDOMIZED-PARTITION (A, p, r)

```
1 i = \text{RANDOM}(p, r);
2 exchange A[i] with A[r];
3 return Partition(A, p, r);
```

▶ use Randomized-Partition in Quicksort

Analysis

▷ each pivot appears exactly once

calls to Partition $\leq n$

 \triangleright define X := # comparisons to pivots

$$T(n) = O(n+X) = O(X)$$

 \triangleright let z_i be the ith smallest element and define

$$X_{ij} = I \{z_i \text{ is compared to } z_j\}$$

assume all values are distinct

 \triangleright how to express X as a function of X_{ij} ?

Analysis

when does it compare z_i and z_j ?

- $\triangleright z_i$ or z_j is pivot (only apears in at most one loop)
- \triangleright the pair z_i, z_j is compared at most once

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^n X_{ij}$$

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \Pr\{z_i \text{ is compared to } z_j\}$$

$$\Pr\{X_{ij} = 1\} = ?$$

Analysis

- \triangleright define $Z_{ij} = \{z_i, \dots, z_j\}$ for i < j assume all distinct values
- \triangleright if x_k with i < k < j is chosen as pivot, then z_i and z_j will not be compared at any subsequent time

$$Pr\{z_i \text{ is compared to } z_j\}$$

 $=\operatorname{\sf Pr}\left\{z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}
ight\} = rac{2}{j-i+1}$

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

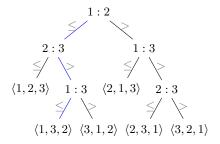
$$<\sum_{i=1}^{n-1}\sum_{k=1}^{n}\frac{2}{k}=\sum_{i=1}^{n-1}O(\log n)=O(n\log n)$$

Remarks on Quicksort

- $\,\,\vartriangleright\,$ though $\Theta(n^2)$ in worst case, assuming distinct elements, it is $O(n\log n)$ in expectation
- ▷ in place algorithm
- \triangleright can we break the barrier $O(n \log n)$?

Decision Tree for Sorting

comparison sort: sorting algorithm based on comparison



- \triangleright #leaves = | {possible inputs} | = #permutations = n!
- > any path from root to leaf corresponds to an execution of a comparison sorting algorithm

Lower Bound

Theorem

Comparison sort requires $\Omega(n \log n)$ comparisons in the worst case.

consider a decision tree of height h with l leaves

- $\, \triangleright \, l \leq 2^h \, \, {\rm for \, any \, \, binary \, tree} \,$
- \triangleright algorithm must solve all permutations, thus $l \ge n!$

$$n! \le l \le 2^h \Rightarrow h \ge \log(n!) = \Omega(n \log n)$$

Stirling formula: $n! = \sqrt{2\pi n} \left(\frac{n}{3}\right)^n \left(1 + \Theta(1/n)\right)$