CMPT307: Quicksort

Week 5-1

Xian Qiu

Simon Fraser University

> divide: rearrange A[p..r] into Alp..q — 1] and A[g+ 1..r] s.t.
Ali] < Alg) < Afj], ¥p<i<g-—landg+1<j<r

L g =

> conquer: sort A[p..q — 1] and A[g + 1..r] recursively

> combine: no need (subarrays are already sorted)

QUICKSORT(A, p, 1)

if p < r then
q = PARTITION(A, p,7); // rearrangement
QUICKSORT(A, p,q — 1);
QUICKSORT(A, g + 1,7);

® sru X.Qiu

Partitioning

> select A[r| as pivot
> if A[j] < A[r] for p < j < r, color it blue else color it red

> make switches if red and blue appear alternatively

(3[el2]e[1][7]4]5]

® sru X.Qiu

PARTITION(A, p, 1)

x = Alr]; // select Alr] as pivot
t=p-—1;
for j=ptor—1do

if A[j] <z then

o s W N =

=14 1;
exchange A[i] with A[j];

7 exchange A[i + 1] with A[r];
8 return :+ 1;

® SFU X.Qiu

Performance

worst-case: A[r| = max; Al]

| Al

T(n) =T(n—1)+T(0) + O(n) = T(n) = O(n?)

best-case: A[r] is median

A

T(n) =2T(n/2) +0O(n) = T(n) = ©(nlogn)

® sru X.Qiu

Performance

what if slightly better than worst-case? say
T(n) =T(9n/10) + T(n/10) + cn

" cn

1 N

L 9
m” ™ cn

logyy 1 l/ N N

100 oo 1 Sp —— o
/\ /N 7\
logyg/e 1 / N A FANAY / \

_81 729
1 Toos ! Toog M i cn
SN N
R il < Cp
\

| il < cn

O(nlgn)

® SFuU X.Qiu

> assume the input is a uniform random permutation

> PARTITION produces a mix of “worst” and “best” splits

n O(n)
0 n—1 O(n)
/ \ h < 2logn
n—1 n—1
ol 5 em

> intuition: O(nlogn)

> what if the assumption does not hold?

® sru X.Qiu

Randomized Partition

random sampling
> randomly select A[i] from A[p..r| as pivot
> exchange A[r] with A[i] and apply PARTITION;

RANDOMIZED-PARTITION(A, p, 1)

1 ¢ = RANDOM(p, 1);
2 exchange A[i] with A[r];
3 return PARTITION(A, p,7);

> use RANDOMIZED-PARTITION in QUICKSORT

® sru X.Qiu

> each pivot appears exactly once

A

calls to PARTITION < n

> define X := # comparisons to pivots
T(n)=0(n+X)=0(X)

> let z; be the 7th smallest element and define
X;j =1{z; is compared to z;}
assume all values are distinct

> how to express X as a function of X;;7

® sru X.Qiu

when does it compare z; and z;?
> 2 or z; is pivot (only apears in at most one loop)

> the pair z;, z;j is compared at most once

n—1 n

E[X] = Z Z Pr{z; is compared to z;}

i=1 j=i+1

Pr{X,'j = 1} =7

® sru X.Qiu

> define Z;; = {z,...,2;} fori < j assume all distinct values

> if x with ¢ < k < j is chosen as pivot, then z; and z; will not
be compared at any subsequent time
Pr{z; is compared to z;}

= Pri{z i is the first pivot ch from Z;;} = — =
r{z; or z; is the first pivot chosen from Z;;} it

2 — 2
EX] =3 > - =22 i
i:lj:i+1]72+1 i=1 k:1k+1
n—1 n 2 n—1
< P O(logn) = O(nlogn)
1=1 k=1 i=1

® sru X.Qiu

Remarks on Quicksort

> though @(nQ) in worst case, assuming distinct elements, it is
O(nlogn) in expectation

> efficient in practice and the constant hidden in big O notation
is small

> in place algorithm

> can we break the barrier O(nlogn)?

® sru X.Qiu

Decision Tree for Sorting

comparison sort: sorting algorithm based on comparison

> F+leaves = | {possible inputs} | = #permutations = n!

> any path from root to leaf corresponds to an execution of a
comparison sorting algorithm

> worst case running time = height of decision tree

® sru X.Qiu

Theorem

Comparison sort requires £2(nlogn) comparisons in the worst case.

consider a decision tree of height h with [leaves

> 1 < 2P for any binary tree

> algorithm must solve all permutations, thus [> n!

n! <1< 2" = h>log(n!) = Q(nlogn)

Stirling formula: n! = v27n (%)n 1+061/n))

® sru X.Qiu

	Quick Sort
	Lower Bound

