
CMPT307: Quicksort
Week 5-1

Xian Qiu

Simon Fraser University

xianq@sfu.ca

Quicksort

. divide: rearrange A[p..r] into A[p..q − 1] and A[q + 1..r] s.t.

A[i] ≤ A[q] ≤ A[j], ∀p ≤ i ≤ q − 1 and q + 1 ≤ j ≤ r

A[q]≤ ≤

. conquer: sort A[p..q − 1] and A[q + 1..r] recursively

. combine: no need (subarrays are already sorted)

Quicksort(A, p, r)

1 if p < r then
2 q = Partition(A, p, r); // rearrangement

3 Quicksort(A, p, q − 1);
4 Quicksort(A, q + 1, r);

2 of 14X.QiuSFUU

Partitioning

. select A[r] as pivot

. if A[j] < A[r] for p ≤ j < r, color it blue else color it red

. make switches if red and blue appear alternatively

3 8 2 1 7 46 5

p r

q

3 of 14X.QiuSFUU

Pseudocode

Partition(A, p, r)

1 x = A[r]; // select A[r] as pivot

2 i = p− 1;
3 for j = p to r − 1 do
4 if A[j] ≤ x then
5 i = i + 1;
6 exchange A[i] with A[j];

7 exchange A[i + 1] with A[r];
8 return i + 1;

4 of 14X.QiuSFUU

Performance

worst-case: A[r] = maxiA[i]

A[r]

T (n) = T (n− 1) + T (0) + Θ(n)⇒ T (n) = Θ(n2)

best-case: A[r] is median

A[r]

T (n) = 2T (n/2) + Θ(n)⇒ T (n) = Θ(n log n)

5 of 14X.QiuSFUU

Performance

what if slightly better than worst-case? say

T (n) = T (9n/10) + T (n/10) + cn

6 of 14X.QiuSFUU

Average-Case

. assume the input is a uniform random permutation

. Partition produces a mix of “worst” and “best” splits

n

0 n− 1

n−1
2
− 1 n−1

2

Θ(n)

Θ(n)

Θ(n)

h ≤ 2 logn

. intuition: O(n log n)

. what if the assumption does not hold?

7 of 14X.QiuSFUU

Randomized Partition

random sampling

. randomly select A[i] from A[p..r] as pivot

. exchange A[r] with A[i] and apply Partition;

Randomized-Partition(A, p, r)

1 i = Random(p, r);
2 exchange A[i] with A[r];
3 return Partition(A, p, r);

. use Randomized-Partition in Quicksort

8 of 14X.QiuSFUU

Analysis

. each pivot appears exactly once

A[r]

calls to Partition ≤ n

. define X := # comparisons to pivots

T (n) = O(n + X) = O(X)

. let zi be the ith smallest element and define

Xij = I {zi is compared to zj}
assume all values are distinct

. how to express X as a function of Xij?

9 of 14X.QiuSFUU

Analysis

when does it compare zi and zj?

. zi or zj is pivot (only apears in at most one loop)

. the pair zi, zj is compared at most once

X =

n−1∑
i=1

n∑
j=i+1

Xij

E[X] =

n−1∑
i=1

n∑
j=i+1

Pr {zi is compared to zj}

Pr {Xij = 1} =?

10 of 14X.QiuSFUU

Analysis

. define Zij = {zi, . . . , zj} for i < j assume all distinct values

. if xk with i < k < j is chosen as pivot, then zi and zj will not
be compared at any subsequent time

Pr {zi is compared to zj}

= Pr {zi or zj is the first pivot chosen from Zij} =
2

j − i + 1

E[X] =

n−1∑
i=1

n∑
j=i+1

2

j − i + 1
=

n−1∑
i=1

n−i∑
k=1

2

k + 1

E[X] <

n−1∑
i=1

n∑
k=1

2

k
=

n−1∑
i=1

O(logn) = O(n logn)

11 of 14X.QiuSFUU

Remarks on Quicksort

. though Θ(n2) in worst case, assuming distinct elements, it is
O(n log n) in expectation

. efficient in practice and the constant hidden in big O notation
is small

. in place algorithm

. can we break the barrier O(n log n)?

12 of 14X.QiuSFUU

Decision Tree for Sorting

comparison sort: sorting algorithm based on comparison

1 : 2

2 : 3 1 : 3

〈1, 2, 3〉 1 : 3 〈2, 1, 3〉 2 : 3

〈1, 3, 2〉 〈3, 1, 2〉 〈2, 3, 1〉 〈3, 2, 1〉

≤ >

≤ > ≤ >

≤ > ≤ >

. #leaves = | {possible inputs} | = #permutations = n!

. any path from root to leaf corresponds to an execution of a
comparison sorting algorithm

. worst case running time = height of decision tree

13 of 14X.QiuSFUU

Lower Bound

Theorem

Comparison sort requires Ω(n logn) comparisons in the worst case.

consider a decision tree of height h with l leaves

. l ≤ 2h for any binary tree

. algorithm must solve all permutations, thus l ≥ n!

n! ≤ l ≤ 2h ⇒ h ≥ log(n!) = Ω(n log n)

14 of 14X.QiuSFUU

Stirling formula: n! =
√

2πn
(
n
3

)n
(1 + Θ(1/n))

	Quick Sort
	Lower Bound

