CMPT307: Heapsort

Week 4-3

Xian Qiu

Simon Fraser University

In Place Sorting

a sorting algorithm is in place if it stores O(n) arrays

> insertion sort is in place O(n?)

> what about merge sort?

MERGE-SORT(A,p,r)

1 if p < r then

2 q=L+r)/2};

3 MERGE-SORT(A,p,q);

4 MERGE-SORT(A,q + 1,7);
5 MERGE(A,p,q,7);

> merge sort is not in place O(nlogn)
> better algorithms?

@ SFU X.Qiu 2 Of 13

Binary Search Trees

X

y.key < x.key < z.key

having a BST, sorting costs only ©(n)
running time is mainly bounded by building a BST

classical BST: insertion is simple, may yield unbalanced tree

v Vv VvV V

red-black trees, AVL trees: yield (approximately) balanced
tree, but insertion is complicated

> want a balanced tree, with simpler insertion

m SFU X.Qiu 3 Of 13

heap is an array object with attributes: length and heap-size

nef1af0]8[7]9 3] 2[4]1]

PARENT(¢) {return [i/2];}
LEFT(3) {return 2i; }
Ri1GHT(3) {return 2i 4 1;}

> heap forms a (nearly) complete binary tree
> max-heap: A[Parent(i)] > Alf]
> min-heap: A[Parent(7)] < Ali

® SFuU X.Qiu

>n>1+24... 4214 1=20
>n<1+2+4... 428 =211
> n = |logn]

> how many leaves?

« node n is the last leave and |n/2] is the last internal node
« # leaves = [n/2]

@ SFU X.Qiu 5 Of 13

Maintaining Heap

> given array A and index %, assume the subtrees rooted at
LerT(i) and RicuT(i) are max-heaps

> make the subtree rooted at 7 a heap

@ SFU X.Qiu 6 Of 13

Maintaining Heap

Max-HEAPIFY(A,7)

1 | = LEFT(4);
2 r = RIGHT(%);
// find argmax {A[l], A[r], Ali]} for l,r,i < Aheap-size
3 if [< A.heap-size and A[l] > A[i] then
4 L largest =1 ;

5 else if r < A.heap-size and A[r] > Allargest] then
6 L largest =1 ;

// if A is not a max-heap
7 if largest # i then
8 exchange A[i] with Allargest];
L Max-HEAPIFY (A, largest);

running time O(h) = O(logn)

@ SFU X.Qiu 7 Of 13

Building Heap

> to convert an array A into a heap
> use Max-Hepiry in a bottom-up manner

BuiLD-MAX-HEAP(A)

1 A.heap-size = A.length;
2 for i = |A.length/2| down to 1 do
3 | MaX-HEAPIFY(A,i);

> running time?

@ SFU X.Qiu 8 Of 13

Tighter Bound

¢ T
@ @ h = |logn]
1w e
@ @ @

> [# nodes at height k| = [# nodes at depth h — k| < 2h=F
> 2t <p=2hh <A

llogn] n [logn] k
Tn)= > 5 O0mW=0|n >
k=0

Z L2 = 71/2 =2 = T(n)=0(n)

@ SFU X.Qiu 9 Of 13

nefiafio[8 703 2[4 1]

HEAPSORT(A)

BuiLD-MAX-HEAP(A);

for i= A.length down to 2 do
exchange A[1] with A[d];
A.heap-size = A.heap-size — 1;
Max-HEAPIFY(A, 1);

QA W N =

heapsort is in place and runs in O(nlogn)

(U] SFU X.Qiu 10 of 13

Priority queue

> each element has a key (priority)

> dequeue an element with the maximum key

max-priority queue supports the following operations
> INSERT(S,z): inserts x into S
> Maximum(S): returns the element with the largest key
> EXTRACT-MAX(S): returns Maximum(S) and remove it

> INCREASE-KEY(S,2,k): increase x.key to k (k& > current key)

can use max-heap to implement max-priority queue

(U] SFU X.Qiu 11 of 13

HEAP-MAXIMUM(A) {return A[1];}

HEAP-EXTRACT-MAX(A)

1 maz = A[l]; // assume A.heap-size >1
2 A[l] = A[A.heap-size];

3 A.heap-size = A.heap-size — 1,

4 MAX-HEAPIFY(A,1);

5 return mazx,

(U] SFU X.Qiu 12 of 13

HEAP-INCREASE-KEY (A, 7, key)

Ali] = key ; // assume A[i] < key
while ¢ > 1 and A[PARENT(4)] < A[i] do
L exchange A[i] with A[PARENT(3)];

AW N =

1 = PARENT(%);

HEAP-INSERT(A, key)

1 A.heap-size = A.heap-size + 1;
A[A.heap-size] = —o0;
3 HEAP-INCREASE-KEY(A, A.heap-size, key);

N

(U] SFU X.Qiu 13 of 13

	Heapsort
	Priority Queues

