CMPT307: Recurrences

Week 3-3

Xian Qiu

Simon Fraser University

Recurrences

a>1,b>1

T(n) = O(1) if n < no,
aT(n/b) + f(n) otherwise,

> boundary condition: T'(n) = O(1) if n < ng

> if boundary is clear, simplify it as T'(n) = aT'(n/b) + f(n)
> interpret n/b as either |n/b| or [n/b]

> T(n)="?

@ SFU X.Qiu 2 Of 10

> substitution method
> recursion tree method

> master method

@ SFU X.Qiu 3 Of 10

Substitution Method

T(n)=2T(n/2)+n

guess T'(n) = O(nlogn), to show T'(n) < c¢-nlogn for n > ng
> let ¢ > T'(2) and claim holds for n = 2

> assume T'(m) < c¢-mlogm forall 2 <m <n

T(n)=2T(n/2)+n<2c- glogg +n

=c-nlogn—cn+n<c-nlogn let ¢ >1
note: asymptotic notations cannot be used in inductive proof!
> now our guess is T'(n) = O(n)
> by induction, T'(n) = 20(n/2) + n = O(n) wrong!

asymptotic notations do not have equivalence relation

® sru X.Qiu

Substitution Method

T(n) =T(In/2]) + T([n/2]) +1

guess T'(n) = O(n) and to show T'(n) < ¢n for n > nyg
> it holds for n = 1 by letting ¢ > T'(1)
> assume it is true for 1 < m < n and consider n

T(n)<c|n/2]+c[n/2]+1=cn + 1

show T'(n) < en — d instead
> assume true for 1 < m < n and consider n

T(n) < (c|n/2] —d)+(c[n/2] —d) +1
=en—d—d+1<en—-—d

m SFU X.Qiu 5 Of 10

Changing Variables

T(n) =2T(v/n) +logn
let m = logn and S(m) := T'(n), then
S(m) =T(2™) and S(m/2) = T(2™/?)

T(2™) = 2T(2m/2) +m

(
= S(m)=28(m/2)+m
= S(m)=mlogm
= T(n)=S(m)=Ilognloglogn

@ SFU X.Qiu 6 Of 10

Recursion Tree Method

T(n)=2T(n/2)+n

TR I R CO R
/ \ / \ / \ / \

A A A A A A A

I\ 7\ 7\ I\ 7\ 7\ 7\

I\ 7\ 7N I\ 7o\ 7o\ 7N & n

(@@ @@ s
T(n) =2"T(1) +n -k =nT(1) + nlogn = O(nlogn)

® sFu X.Qiu

Recursion Tree Method

T(n) = 3T (n/4) + ©(n?)

> tree height k = logyn and # leaves = 3¥
> additive terms:

2
cn
n\2
+3e- (%)
2 n\2
+.
ko (nN\2 _ 1=(3/16)"
w3t (45) = 1-3/16 "
1—(3/16)F o, 1—(3/16)k8am
T(n)=3"T(1) + ——2L——cn® =384 "T(1) + — 7
(n) =3"T(1)+ 1= 3/16 en” =3 1)+ 1-3/16 cn

= 0(n**%) + 0(n*) = O(n?)

@ SFU X.Qiu 8 Of 10

Master Method

consider the recursive formula: @ > 1, b > 1 are constants
T'(n) = aT(n/b) + f(n)

Master theorem
1. if f(n) = O(n'°8»*~<), then T'(n) = O(n'8+)
2. if f(n) = O(n'°%*), then T'(n) = O(n'°8 “logn)

3. if f(n) = Q(n'°% **¢) and af(n/b) < cf(n) for ¢ < 1 and all sufficiently
large n, then T'(n) = O(f(n))

compare f(n) with n!°%2 and take the (strictly) larger one

if they are the same, multiply a factor logn

nlogy a—e logy a

polynomially smaller than n

v VvV VvV V

there are gaps, e.g. f(n) = O(n'°®%/logn) and master
theorem cannot be applied

m SFU X.Qiu 9 Of 10

T(n)=9T(n/3)+n
> f(n)=n;a=9,b=3, nlogya — plogz 9 — 2
> case 1 applies, T(n) = O(n?)
T(n)=T(2n/3)+1
> f(n)=1;a=1b=3/2 nlow =1;
> case 2 applies, T'(n) = O(logn)
T(n) =3T(n/4) +nlogn
> f(n) =nlogn; a=3,b=4, nlogsa — plogy 3

> case 3 may apply: to verify
af(n/b) < cf(n) for some ¢ < 1 and all large n
> 3% log G = %(nlogn -2)< %nlogn

T(n) =2T(n/2) + nlogn does not apply!

(U] SFU X.Qiu 10 of 10

	Substitution Method
	Recursion Tree Method
	Master Method

