CMPT307: Recurrences

Week 3-3

Xian Qiu

Simon Fraser University

Recurrences

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le n_0, \\ aT(n/b) + f(n) & \text{otherwise,} \end{cases} \quad a \ge 1, b > 1$$

- $\,\,\,\,\,\,\,\,\,$ boundary condition: $T(n)=\Theta(1)$ if $n\leq n_0$
- $\,\,\,\,\,\,\,\,\,$ if boundary is clear, simplify it as T(n)=aT(n/b)+f(n)
- $\triangleright T(n) = ?$

Outline

Substitution Method

$$T(n) = 2T(n/2) + n$$

guess $T(n) = O(n \log n)$, to show $T(n) \le c \cdot n \log n$ for $n \ge n_0$

- $\,\,\,\,\,\,\,$ let $c \geq T(2)$ and claim holds for n=2
- \triangleright assume $T(m) \le c \cdot m \log m$ for all $2 \le m < n$

$$T(n) = 2T(n/2) + n \le 2c \cdot \frac{n}{2} \log \frac{n}{2} + n$$
$$= c \cdot n \log n - cn + n \le c \cdot n \log n \qquad \text{let } c \ge 1$$

note: asymptotic notations cannot be used in inductive proof!

- \triangleright now our guess is T(n) = O(n)
- \triangleright by induction, T(n)=2O(n/2)+n=O(n) wrong! asymptotic notations do not have equivalence relation

Substitution Method

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

guess T(n) = O(n) and to show $T(n) \le cn$ for $n \ge n_0$

- \triangleright it holds for n=1 by letting $c \ge T(1)$
- \triangleright assume it is true for $1 \le m < n$ and consider n

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1 = cn + 1$$

show $T(n) \le cn - d$ instead

 \triangleright assume true for $1 \le m < n$ and consider n

$$T(n) \le (c \lfloor n/2 \rfloor - d) + (c \lceil n/2 \rceil - d) + 1$$

= $cn - d - d + 1 \le cn - d$

Changing Variables

$$T(n) = 2T(\sqrt{n}) + \log n$$
 let $m = \log n$ and $S(m) := T(n)$, then
$$S(m) = T(2^m) \text{ and } S(m/2) = T(2^{m/2})$$

$$T(2^m) = 2T(2^{m/2}) + m$$

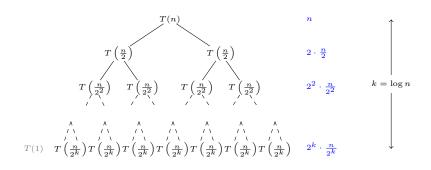
$$\Rightarrow S(m) = 2S(m/2) + m$$

$$\Rightarrow S(m) = m \log m$$

$$\Rightarrow T(n) = S(m) = \log n \log \log n$$

Recursion Tree Method

$$T(n) = 2T(n/2) + \frac{n}{n}$$



$$T(n) = 2^{k}T(1) + n \cdot k = nT(1) + n \log n = O(n \log n)$$

Recursion Tree Method

$$T(n) = 3T(n/4) + \Theta(n^2)$$

- \triangleright tree height $k = \log_4 n$ and # leaves $= 3^k$
- ▷ additive terms:

$$cn^{2}$$

$$+ 3c \cdot \left(\frac{n}{4}\right)^{2}$$

$$+ 3^{2}c \cdot \left(\frac{n}{4^{2}}\right)^{2}$$

$$+ \cdots$$

$$+ 3^{k}c \cdot \left(\frac{n}{4^{k}}\right)^{2} = \frac{1 - (3/16)^{k}}{1 - 3/16}cn^{2}$$

$$T(n) = 3^{k}T(1) + \frac{1 - (3/16)^{k}}{1 - 3/16}cn^{2} = 3^{\log_{4} n}T(1) + \frac{1 - (3/16)^{\log_{4} n}}{1 - 3/16}cn^{2}$$
$$= \Theta(n^{\log_{4} 3}) + O(n^{2}) = O(n^{2})$$

Master Method

consider the recursive formula: $a \ge 1$, b > 1 are constants

$$T(n) = aT(n/b) + f(n)$$

Master theorem

- 1. if $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$
- 2. if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. if $f(n)=\Omega(n^{\log_b a+\epsilon})$ and $af(n/b)\leq cf(n)$ for c<1 and all sufficiently large n, then $T(n)=\Theta(f(n))$
- \triangleright compare f(n) with $n^{\log_b a}$ and take the (strictly) larger one
- \triangleright if they are the same, multiply a factor $\log n$
- $\triangleright n^{\log_b a \epsilon}$ polynomially smaller than $n^{\log_b a}$
- \triangleright there are gaps, e.g. $f(n) = \Theta(n^{\log_b a}/\log n)$ and master theorem cannot be applied

Examples

$$T(n) = 9T(n/3) + n$$

$$> f(n) = n; \ a = 9, \ b = 3, \ n^{\log_b a} = n^{\log_3 9} = n^2$$

$$> \text{case 1 applies, } T(n) = \Theta(n^2)$$

$$T(n) = T(2n/3) + 1$$

$$> f(n) = 1; \ a = 1, \ b = 3/2, \ n^{\log_b a} = 1;$$

$$> \text{case 2 applies, } T(n) = \Theta(\log n)$$

$$T(n) = 3T(n/4) + n\log n$$

$$> f(n) = n\log n; \ a = 3, \ b = 4, \ n^{\log_b a} = n^{\log_4 3}$$

$$> \text{case 3 may apply: to verify}$$

$$af(n/b) \le cf(n) \text{ for some } c < 1 \text{ and all large } n$$

$$> 3\frac{n}{4}\log \frac{n}{4} = \frac{3}{4}(n\log n - 2) \le \frac{3}{4}n\log n$$

 $T(n) = 2T(n/2) + n \log n$

does not apply!