
CMPT307: Red-Black Trees
Week 3-2

Xian Qiu

Simon Fraser University

xianq@sfu.ca



Deletion

recall the deletion (of z) in binary search trees

z

l r

y

nil x

−→ z

l

y

nil r

x

−→ y

l r

x

what if it is a red-black tree?

. implement the above and let y.color = z.color

. no problem if y was red

. problems may occur if y was black

2 of 9X.QiuSFUU



Idea

Key idea

Add an extra black to x when counting black-height, thus the black-height
property holds as before.

. x might be red-and-black (if x.color = Red) or double black
(if x.color = Black)

. if x is red-and-black, then color x black (done)

. else use Rotation to modify tree, then remove the extra black

. look at x’s sibling w (always existed?)

. in the following, assume x = x.p.left (else, similar)

3 of 9X.QiuSFUU



Case 1

w is red

B

A D

α β C E

γ δ ε ς

x w

D

B E

A C ε ς

α β γ δ

x w

switch the colors of w and w.p;

Left-Rotate(w.p);

update w;

. black height property holds

. now w is black, then distinguish w’s children

4 of 9X.QiuSFUU



Case 2

(w is black) its two children are black

B

A D

α β C E

γ δ ε ς

x w

B

A D

α β C E

γ δ ε ς

x

take one black off x and w;

add an extra black to x.p;

update x and w;

. if enter case 2 via case 1, then new x is red-and-black

. color x black and terminate else go to case 3 or 4

5 of 9X.QiuSFUU



Case 3

(w is black) w.left is red and w.right is black

B

A D

α β C E

γ δ ε ς

x w

B

A C

α β γ D

δ E

ε ς

x w

switch the colors of w and w.left;

Right-Rotate(w);

. black-height property holds

. go to case 4

6 of 9X.QiuSFUU



Case 4

(w is black) w.right is red

B

A D

α β C E

γ δ ε ς

x w

D

B E

A C ε ς

α β γ δ

x = T.root

swith the colors of w and w.p;

Left-Rotate(w.p);

w.color = Black and remove the extra black of x;

update x := T.root

. black-height property holds

. terminate (running time?)

7 of 9X.QiuSFUU



Pseudocode

RB-Delete-Fixup(T,x)

1 while x 6= T.root and x.color == black do
2 if x == x.p.left then
3 w = x.p.right ; // sibling w
4 if w.color == red then
5 w.color = black; x.p.color = red ; // case 1

6 Left-Rotate(T, x.p); w = x.p.right;

7 if w.left.color == black and w.right.color == black then
8 w.color = red; x = x.p ; // case 2

9 else if w.right.color == black then
10 w.left.color = black; w.color = red ; // case 3

11 Right-Rotate(T,w); w = x.p.right;

12 w.color = x.p.color; x.p.color = black ; // case 4

13 w.right.color = black; Left-Rotate(T, x.p); x = T.root;

14 else ... same as above, with “left” and “right” exchanged

15 x.color = black;

8 of 9X.QiuSFUU



Summarization

insert delete search sort keys

linked list

doubly linked list

hashing with chaining

open addressing

binary search tree

red-black tree

9 of 9X.QiuSFUU


	Deletion

