CMPT307: Red-Black Trees

Week 3-2

Xian Qiu

Simon Fraser University

recall the deletion (of z) in binary search trees

T

- -r.
I
/ b=
nil
what if it is a red-black tree?
> implement the above and let y.color = z.color
> no problem if y was red

> problems may occur if y was black

® sru X.Qiu

Key idea

Add an extra black to when counting black-height, thus the black-height
property holds as before.

> x might be red-and-black (if z.color = Rep) or double black
(if z.color = Brack)

> if is red-and-black, then color x black (done)
> else use Roration to modify tree, then remove the extra black
> look at z's sibling w (always existed?)

> in the following, assume x = x.p.left (else, similar)

® SFU X.Qiu

w is red

B --= D
z (A w E
N N
a B C E z (A w (C € S

/A /N /N /A

Y & € ¢S a B 7 4

switch the colors of w and w.p;
LEFT-ROTATE(w.p);

update w;

> black height property holds

> now w is black, then distinguish w's children

® SFU X.Qiu

(w is black) its two children are black

take one black off x and w;
add an extra black to x.p;

update x and w;

> if enter case 2 via case 1, then new z is red-and-black

> color x black and terminate else go to case 3 or 4

® SFuU X.Qiu

(w is black) w.left is red and w.right is black

x/\ /w
N SR

Y 6 € ¢

switch the colors of w and w.left;
RIGHT-ROTATE(w);

> black-height property holds

> go to case 4

® SFU X.Qiu

(w is black) w.right is red

x = T.root
--3
/B /E\
e @(A
/ N\
O I € a B 7 6

swith the colors of w and w.p;
LEFT-ROTATE(w.p);
w.color = BLACK and remove the extra black of x;

update x := T.root

> black-height property holds
> terminate (running time?)

® SFU X.Qiu

RB-DELETE-FIXUP(T x)

1 while x # T.root and x.color == BLACK do
2 if x == x.p.left then
3 w = z.p.right ; // sibling w
4 if w.color == RED then
5 w.color = BLACK; x.p.color = RED ; // case 1
6 LEFT-ROTATE(T, z.p); w = z.p.right;
7 if w.left.color == BLACK and w.right.color == BLACK then

L w.color = RED; * = x.p ; // case 2
9 else if w.right.color == BLACK then
10 w.left.color = BLACK; w.color = RED ; // case 3
11 RIGHT-ROTATE(T, w); w = z.p.right;
12 w.color = x.p.color; x.p.color = BLACK ; // case 4
13 w.right.color = BLACK; LEFT-ROTATE(T), z.p); « = T.root;
14 else ... same as above, with “left” and “right” exchanged

15 x.color = BLACK;

® SFU X.Qiu

Summarization

insert | delete | search | sort keys

linked list

doubly linked list
hashing with chaining
open addressing
binary search tree
red-black tree

® SFU X.Qiu

	Deletion

