CMPT307: Red-Black Trees

Week 3-1

Xian Qiu

Simon Fraser University

Red-Black Tree

binary search tree with color property

Red-black properties

1. every node is either red or black

2. the root and all leaves (nil) are black
3. the children of a red node are black
4

. for each node, all simple paths from the node to descendant leaves
contain the same number of black nodes black-height property

/X
o @

T .nil

® SFU X.Qiu IR

7
TN
3
s 10;\/22)
> each leaf has the same depth w.r.t. black nodes

> # red nodes < # black nodes
> is it possible to have only black nodes?

Black-height: bh(x)
bh(z) denotes the number of black nodes (excluding z) of a simple path from

 to a descendant leaf.

> tree height h < 2bh(r), where r = T'.root

® SFuU DOIITRN 3 of 12

Tree Height

Lemma. h < 2bh(r), where r = T'.root.

r nil
{ { { { o—0

h = #black — 1 + #red < 2bh(r)

Theorem

A red-black tree with n internal nodes has height at most 2log(n + 1).
> any subtree rooted at x has at least 2°"(#) — 1 nodes

> 2°0() — 1 < yields bh(r) < log(n + 1)
> since h < 2bh(r), we get h < 2log(n + 1)

® sru X.Qiu

Tree Height

given a red-black tree T', count its black nodes

/\.\
8 8

> replace a red node by one of its black rooted subtree
> discard the other one
> “balanced” binary search tree T” of height bh(r) — 1

V(D) > |[V(T)| =142+ 4+ 20h()=1 = 9bh()

® SFU X.Qiu CISEw

RIGHT-ROTATE(T ,y)
————————— >

<
LEFT-ROTATE(T)

> use RIGHT-ROTATE to move up left-branch
use LEFT-ROTATE to move up right-branch

> rotations preserve binary-search-tree property

> running time O(1)

® SFuU X.Qiu (W

Insertion

> color z red or black?

>> idea: color red and move the violation up (if possible)
> z's uncle y is critical

1. y is red: move up the violation

2. y is black and z is a left child: RiGHT-ROTATE

3. y is black and z is a right child: Lerr-RoraTe

® SFU X.Qiu ASEw

insert z =15

e
u{\ "

case 1: y is red

color y and z.p black; color y.p red

® SFU DOIITRN 3 of 12

insert z =15

7
va
7N
: ®
/
8 11 2%
VRN / \

case 1: y is red
color y and z.p black; color y.p red

update z,y

® SFU DOIITRN 3 of 12

insert z =15

7
va
7N
: ®
/
8 11 2%
/N / \

case 2: y is black and z is a left child
RIGHT-ROTATE(T,2.p);
update z,y;

® SFU DOIITRN 3 of 12

insert z =15

11 22

case 2: y is black and z is a left child
RIGHT-ROTATE(T,2.p);
update z,y;

go to case 3

® SFU DOIITRN 3 of 12

insert z =15

11 22

case 3: y is black and z is a right child
LEFT-ROTATE(T 2.p.p);

® SFU DOIITRN 3 of 12

insert z =15

7/
N

/3\ /8\ /]-1b /22b

case 3: y is black and z is a right child

z

LEFT-ROTATE(T 2.p.p);

® SFU DOIITRN 3 of 12

insert z =15

case 3: y is black and z is a right child
LEFT-ROTATE(T 2.p.p);

recolor z.p and z.p.left;

® SFU DOIITRN 3 of 12

Loop invariant

1. node z is red
2. if z.p is the root, then z.p is black
3. it violates at most one red-black property at any time

violation 1: z is the root and is red
violation 2: both z and z.p are red

> initialization satisfies the loop invariant
> termination: z.p is black (root is also colored black)

> to show: loop invariant holds for each loop
need check the black-height property

® SFU X.Qiu CISER

> z.p = z.p.p.left (another case can be discussed analogously)

> black-height property holds
> if 2/ is the root, then violation 1 occurs

> else if 2/.p is red, violation 2 occurs

® SFU DI 10 of 12

Case 2 & 3
. &
___) -
>~ 5
o z z
B a B

case 2 case 3

\
> B
I A)
a B 4

> case 2: black-height property holds, violation 2
> case 3: all red-black properties will hold at termination

> running time of insertion?

® SFU DOl 11 of 12

RB-INSERT-FIXUP(T,z)

1 while z.p.color == RED do

2 if z.p = z.p.p.left then

3 y = z.p.p.right ; // uncle y
4 if y.color == RED then

5 z.p.color = BLACK; y.color = BLACK ; // case 1
6 z.p.p.color = RED; z = z.p.p;

7 else if z == z.p.right then

8 L z = z.p; LEFT-ROTATE(T, 2) ; // case 2
9 z.p.color = BLACK; z.p.p.color = RED ; // case 3
10 | RIGHT-ROTATE(T), 2.p.p);

11 else

12 L ... same as above, with “left” and “right” exchanged

3 T.root.color = BLACK;

-

® SFU DI 1D of 12

	Red-Black Tree
	Rotations
	Insertion

