CMPT307: Binary Search Trees

Week 2-3

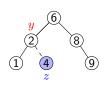
Xian Qiu

Simon Fraser University

Insertion

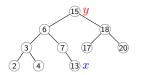
Tree-Insert(T, z)

```
1 y = \text{nil}; // to record the parent of z
2 x = T.root;
3 while x \neq nil do
4 y = x;
if z.key < x.key then
     x = x.\mathsf{left};
     else x = x.right;
8 z.p = y; // do not forget z's parent
9 if y == nil then
10 T.\mathsf{root} = z;
                     //T was empty
11 else if z.key < y.key then
y.left = z;
13 else
14 y.right = z;
```



Successor

successor of x: node of smallest key $\geq x$.key



case 1: 15, 17 (y inserted after x) case 2: 13, 15 (y inserted before x)

Tree-Successor(x, k)

```
1 if x.right \neq nil then

2 return TREE-MINIMUM(x.right); // case 1

3 y = y.p; // case 2
```

4 while $x \neq nil$ and $x \neq y.left$ do

$$x = y;$$
 $y = y.p;$

7 return y;

predecessor of x: node of largest key $\leq x$.key

Deletion

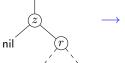
to delete z from T:

- $\triangleright z$ has no children
- $\triangleright z$ has only one child
- $\triangleright z$ has two children

observation:
$$z$$
's successor $y = \text{Tree-Minimum}(z.\text{right})$ $\Rightarrow y.\text{left} = \text{nil}$

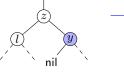
Deletion

(b) only left child



(c) two children¹

y is z's child



(d) two children²

y is not z's child

Transplant

replace u with the subtree rooted at v:

- $\triangleright \ u$'s parent becomes v's parent
- \triangleright u's parent has v as its appropriate child

Transplant(T, u, v)

Implementation of Delete

Tree-Delete(T, z)

```
1 if z left == nil then
TRANSPLANT(T, z, z.right);
                                                                // case (a)
3 else if z.right == nil then
4 TRANSPLANT(T, z, z. left);
                                                                // case (b)
5 else
6 y = \text{Tree-Minimum}(z.\text{right});
                                                     // find z's successor
7 if y.p \neq z then
  TRANSPLANT(T, y, y.right);
                                                                // case (d)
   y.right = z.right;
   y.right.p = y;
                                            // y.right.p was pointed to z
11 TRANSPLANT(T, z, y);
12 y.left = z.left;
13 y.left.p = y;
```

Running Time

Theorem

Each of the dynamic-set operations

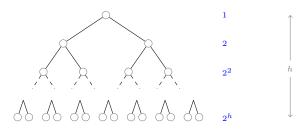
- ▷ SEARCH
- ▷ MINIMUM, MAXIMUM
- ▷ Successor, Predecessor
- ▷ Insert, Delete

on a binary search tree runs in O(h), where h is the tree height.

how large can h be?

We Expect ...

a balanced binary tree



$$n = \sum_{i=0}^{h} 2^{i} = 2^{h+1} - 1 \implies h = \Theta(\log n)$$

idea: to maintain an approximately balanced binary search tree