CMPT307: Binary Search Trees

Week 2-3

Xian Qiu

Simon Fraser University



Insertion

TREE-INSERT(T, 2)

1y =nil; // to record the parent of z

2 x = T.root; ®)

3 while x # nil do Y

4 yf: x; (2) ®)

5 if z.key < x.key then >

6 |z =aleft; L @ ©
z

7 else x = x.right;

8 z.p=1y; // do not forget z’s parent

9 if y == nil then

10 L T.root =z ; // T was empty

11 else if z.key < y.key then
12 L y.left = z;

13 else
14 L y.right = z;

® SFU X.Qiu



Successor

successor of x: node of smallest key > z.key

case 1: 15, 17 (y inserted after z)
case 2: 13, 15 (y inserted before )

TREE-SUCCESSOR(z, k)

1 if x.right # nil then
2 | return TREE-MINIMUM(z.right); // case 1

3 y=1y.p; // case 2
4 while = # nil and x # y.left do

5 T =1y;

6 Yy=1y.p

7 return y;

predecessor of z: node of largest key < x.key

® SFuU X.Qiu



to delete z from T
> z has no children
> z has only one child

> z has two children

observation: z's successor y =TrEr-MiNiMUM(z.right)

= y.left = nil

® SFuU X.Qiu



(a) no left child

(c) two children®
y is z's child

Y = Z'S SUCCESSOr [

(d) two children? — —
y is not z's child nil

.@@ @’ /@’\

® SFuU X.Qiu

/ \



Transplant

replace u with the subtree rooted at v:
> u's parent becomes v's parent

> u's parent has v as its appropriate child

TRANSPLANT(T, u, v)

1 if u.p == nil then
2 | T.root =uv;

3 else if u == u.p.left then
4 L u.p.left = v;

5 else

6 L u.p.right = v;

7 if v # nil then

8 L v.p = u.p;

® SFU X.Qiu



Implementation of Delete

11
12
13

TREE-DELETE(T, z)

if z.left == nil then
| TrANSPLANT(T, 2, z.right);
else if z.right == nil then
| TRANSPLANT(T, 2, 2 left);
else
|y = TREE-MINIMUM(z.right);
if y.p # z then
TRANSPLANT(T, y, y.right);
y.right = z.right;
y.right.p = y;
TRANSPLANT(T, 2, y);
y.left = z.left;
y.left.p =y;

® sru

// case (a)

// case (b)

// find z’s successor

// case (d)

// y.right.p was pointed to z

X.Qiu



Theorem

Each of the dynamic-set operations
> SEARCH
> MINIMUM, MAXIMUM
> SUCCESSOR, PREDECESSOR
> INSERT, DELETE

on a binary search tree runs in O(h), where h is the tree height.

how large can h be?

® SFuU X.Qiu



a balanced binary tree

1

2

22 h
Sbdbdbdbdbdsds
h
n:ZQi:2h+1—1 = h = 0O(logn)
=0

idea: to maintain an approximately balanced binary search tree

® SFU X.Qiu



