CMPT307: Binary Search Trees

Week 2-2

Xian Qiu

Simon Fraser University

Outine

- ▷ open addressing
- ▷ trees
- binary search trees

Linear Probing

auxiliary hash function: $h': U \to \{0, 1, \dots, m-1\}$ linear probing

$$h(k,i) = (h'(k) + i) \mod m$$
, for $i = 0, 1, ..., m - 1$

- \triangleright probe sequence $T[h'(k)], T[h'(k)+1], \ldots, T[m-1]$
- $\triangleright m$ distinct probe sequence in total
- primary clustering: successive filled slots tend to get longer

Example

- ho hash function $h(k,i) = (k+i) \mod 11$
- \triangleright to insert 34, 4, 15, 27

()	1	2	3	4	5	6	7	8	9	10
		34			4	15	27				

Quadratic/Double Probing

quadratic probing:
$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

- $ho c_1, c_2, m$ shall yield distinct h(k,i) values for all i e.g. $c_1=c_2=1/2$ and $m=2^n$
- ightharpoonup secondary clustering: $h(k_1,0)=h(k_2,0)$ implies $h(k_1,i)=h(k_2,i)$

double hashing:
$$h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m$$

- $\, \triangleright \,$ the offset also depends on k
- \triangleright example: choose m prime and let m'=m-1

$$h_1(k) = k \mod m, \quad h_2(k) = 1 + (k \mod m')$$

 $\Theta(m^2)$ probe sequences

Average Running Times

assume uniform hashing

Theorem

If $\alpha < 1$, unsuccessful search requires at most $1/(1-\alpha)$ probes on average.

Corollary

Insertion requires at most $1/(1-\alpha)$ probes on average.

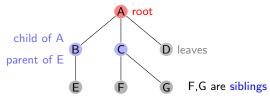
Theorem

If $\alpha < 1$, successful search requires at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ probes on average.

Trees

- ▷ can specify a root of a tree

denoted by T denoted by r

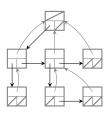


- \triangleright a tree of n nodes has n-1 edges every node has a parent except for the root
- $\triangleright \exists$ a unique path between any two nodes of T
- \triangleright depth of $v \in T$: the length of (r, v)-path
- \triangleright height of $v \in T$: length of longest path from v to all leaves
- \triangleright height of T = height of r

Representation

left-child, right-sibling representation (x = tree node)

- $\triangleright x.p \rightarrow parent of x$
- $\triangleright x.\mathsf{left}\text{-child} \to \mathsf{leftmost}$ child of node x
- $\triangleright x.right-sibling \rightarrow the sibling of x immediately to its right$

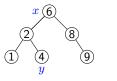


Binary Search Trees

assume each node x is assigned with a key (integer)

Property

if y is a node in the left (right) subtree of x, then y.key < (>) x.key



 $x.\mathsf{left}$ x.right x.p

how to print out keys in sorted order?

Printing Keys

INORDER-TREE-WALK(x)

```
1 if x \neq nil then

2 | INORDER-TREE-WALK(x.left);

3 | print x.key;

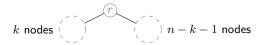
4 | INORDER-TREE-WALK(x.right);
```

Theorem. INORDER-TREE-WALK(T.root) runs in $\Theta(n)$.

$$\triangleright T(n) \in \Omega(n)$$
, to show $T(n) \in O(n)$ (by induction)

Proof of the Theorem

- \triangleright to prove $T(n) \le cn$ for some constant c
- \triangleright for n=1, let $c \ge T(1)$ and (*) holds
- \triangleright consider n and observe



$$T(n) \le T(k) + T(n - k - 1) + \Theta(1)$$

$$\le ck + c(n - k - 1) + d$$

$$= cn - c + d$$

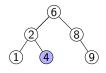
 \triangleright let $c \ge d$ and get $T(n) \le cn$, proving the claim

Searching

Tree-Search(x,k)

```
1 if x == nil \text{ or } k == x.key \text{ then}
2 \( \text{return } x;\)
3 if k < x.key \text{ then}
4 \( \text{return } \text{TREE-SEARCH}(x.left,k);\)
```

- 5 else
- return Tree-Search(x.right,k);



- \triangleright running time O(h), where h = tree height
- non-recursive way?
- maximum and minimum