
CMPT307: Binary Search Trees
Week 2-2

Xian Qiu

Simon Fraser University

xianq@sfu.ca



Outine

. open addressing

. trees

. binary search trees

2 of 12X.QiuSFUU



Linear Probing

auxiliary hash function: h′ : U → {0, 1, . . . ,m− 1}

linear probing

h(k, i) = (h′(k) + i) mod m, for i = 0, 1, . . . ,m− 1

. probe sequence T [h′(k)], T [h′(k) + 1], . . . , T [m− 1]

. m distinct probe sequence in total

. primary clustering: successive filled slots tend to get longer

3 of 12X.QiuSFUU



Example

. hash function h(k, i) = (k + i) mod 11

. to insert 34, 4, 15, 27

0 1 2 3 4 5 6 7 8 9 10

34 4 15 27

4 of 12X.QiuSFUU



Quadratic/Double Probing

quadratic probing: h(k, i) = (h′(k) + c1i + c2i
2) mod m

. c1, c2,m shall yield distinct h(k, i) values for all i
e.g. c1 = c2 = 1/2 and m = 2n

. secondary clustering: h(k1, 0) = h(k2, 0) implies
h(k1, i) = h(k2, i)

double hashing: h(k, i) = (h1(k) + i · h2(k)) mod m

. the offset also depends on k

. example: choose m prime and let m′ = m− 1

h1(k) = k mod m, h2(k) = 1 + (k mod m′)

Θ(m2) probe sequences

5 of 12X.QiuSFUU



Average Running Times

assume uniform hashing

Theorem

If α < 1, unsuccessful search requires at most 1/(1− α) probes on average.

Corollary

Insertion requires at most 1/(1− α) probes on average.

Theorem

If α < 1, successful search requires at most 1
α
ln 1

1−α
probes on average.

6 of 12X.QiuSFUU



Trees

. tree: connected and acyclic graph denoted by T

. can specify a root of a tree denoted by r

A

B C D

E F G

root

leaves
parent of E

child of A

F,G are siblings

. a tree of n nodes has n− 1 edges
every node has a parent except for the root

. ∃ a unique path between any two nodes of T

. depth of v ∈ T : the length of (r, v)-path

. height of v ∈ T : length of longest path from v to all leaves

. height of T = height of r

7 of 12X.QiuSFUU



Representation

left-child, right-sibling representation (x = tree node)

. x.p→ parent of x

. x.left-child → leftmost child of node x

. x.right-sibling → the sibling of x immediately to its right

A

B C D

E F G

A

B C D

E F G

binary tree

8 of 12X.QiuSFUU



Binary Search Trees

assume each node x is assigned with a key (integer)

Property

if y is a node in the left (right) subtree of x, then y.key ≤ (≥) x.key

6

2 8

1 4 9

x

y

x.left

x.right

x.p

how to print out keys in sorted order?

9 of 12X.QiuSFUU



Printing Keys

Inorder-Tree-Walk(x)

1 if x 6= nil then
2 Inorder-Tree-Walk(x.left);
3 print x.key;
4 Inorder-Tree-Walk(x.right);

Theorem. Inorder-Tree-Walk(T.root) runs in Θ(n).

. T (n) ∈ Ω(n), to show T (n) ∈ O(n) (by induction)

10 of 12X.QiuSFUU



Proof of the Theorem

. to prove T (n) ≤ cn for some constant c (*)

. for n = 1, let c ≥ T (1) and (*) holds

. assume T (m) ≤ cm, for all m < n

. consider n and observe

r

k nodes n− k − 1 nodes

T (n) ≤ T (k) + T (n− k − 1) + Θ(1)

≤ ck + c(n− k − 1) + d

= cn− c + d

. let c ≥ d and get T (n) ≤ cn, proving the claim

11 of 12X.QiuSFUU



Searching

Tree-Search(x,k)

1 if x == nil or k == x.key then
2 return x;

3 if k < x.key then
4 return Tree-Search(x.left,k);

5 else
6 return Tree-Search(x.right,k);

6

2 8

1 4 9

. running time O(h), where h = tree height

. non-recursive way?

. maximum and minimum

12 of 12X.QiuSFUU


	Open Addressing
	Trees
	Binary Search Trees

