CMPT307: Binary Search Trees

Week 2-2

Xian Qiu

Simon Fraser University

> open addressing
> trees

> binary search trees

® SFU X.Qiu IR

Linear Probing

auxiliary hash function: ' : U — {0,1,...,m — 1}

linear probing
h(k,i) = (W(k)+i) mod m, fori=0,1,...,m—1
> probe sequence T[h/(k)], T[W (k) +1],...,T[m — 1]

> m distinct probe sequence in total

> primary clustering: successive filled slots tend to get longer

® SFuU X.Qiu NI

> hash function h(k,i) = (k+4) mod 11
> to insert 34,4, 15,27

34 4 11527

® sru X.Qiu

Quadratic/Double Probing

quadratic probing: h(k,i) = (W' (k) 4 c1i + c2i?) mod m

> c1,c2, m shall yield distinct h(k, i) values for all
eg cp=cp=1/2and m=2"

> secondary clustering: h(ki,0) = h(ka,0) implies
h(k1,1) = h(ka,1)

double hashing: h(k,i) = (h1(k) +i- ha(k)) mod m
> the offset also depends on k

> example: choose m prime and let m' =m — 1
hi(k) =k mod m, hs(k)=1+ (k mod m’)

©(m?) probe sequences

® SFU X.Qiu GCISEw

Average Running Times

assume uniform hashing

Theorem

If « < 1, unsuccessful search requires at most 1/(1 —) probes on average.

Corollary

Insertion requires at most 1/(1 — «) probes on average.

Theorem

If o < 1, successful search requires at most élnﬁ probes on average.

® SFuU DOIITRN 6 of 12

Trees

> tree: connected and acyclic graph denoted by T'
> can specify a root of a tree denoted by r
A root
child of A ‘
B C D leaves
parent of E ‘ ‘
E F G F,G are siblings

> a tree of n nodes has n — 1 edges
every node has a parent except for the root

d a unique path between any two nodes of T’

depth of v € T the length of (r,v)-path

height of v € T": length of longest path from v to all leaves
height of T' = height of r

v VvV Vv V

® SFU X.Qiu ASEW

Representation

left-child, right-sibling representation (x = tree node)

> x.p — parent of x

> x.left-child — leftmost child of node =

> x.right-sibling — the sibling of immediately to its right

binary tree
A A
VRN |
c D B—> C—D
RN Lo
E F @ E F—G

® sru

X.Qiu CIER

Binary Search Trees

assume each node z is assigned with a key (integer)

Property

if y is a node in the left (right) subtree of x, then y.key < (>) z.key

z (6) x.left
2 ©) x.right
@ o x.p

how to print out keys in sorted order?

® SFuU X.Qiu CISER

Printing Keys

INORDER-TREE-WALK(x)

1 if = # nil then
2 INORDER-TREE- WALK(z.left);
3 print x.key;

4 INORDER-TREE- WALK(z.right);

Theorem. INORDER-TREE-WALK(T.root) runs in ©(n).

> T(n) € Q(n), to show T'(n) € O(n) (by induction)

® SFuU DI 10 of 12

Proof of the Theorem

> to prove T'(n) < cn for some constant ¢ *)
> forn =1, let ¢ > T(1) and (*) holds
> assume T'(m) < em, for all m <n

> consider n and observe

k nodes () "] n—k — 1 nodes

Tn)<T(k)+T(n—k—1)+06(1)
<ck+en—k—1)+d
=cn—c+d

> let ¢ > d and get T'(n) < cn, proving the claim

® SFU DOl 11 of 12

TREE-SEARCH(X,k)

1 if © == nil or k == z.key then

2 L return r; @
3 if kK < x.key then ©) (8)
4 L return TREE-SEARCH(x.left,k);
© @ ©
5 else

6 | return TREE-SEARCH(z.right,k);

> running time O(h), where h = tree height
> non-recursive way?

> maximum and minimum

® SFU DO 1D of 12

	Open Addressing
	Trees
	Binary Search Trees

