CMPT307: Hash Tables

Week 2-1

Xian Qiu

Simon Fraser University

Direct Address Tables

> dynamic set with key universe U = {0,1,...,N — 1}

> assume unique key values

e}

key satellite data

SRR

> direct address table (array) 77[0.., N — 1]
> SearcH, INserT and DeLeTE take O(1)

> downside: wasting memory

m SFU X.Qiu 2 Of 13

Hash Table

hush function: h: U — {0,1,...,m — 1}

hiky) = hiko)

hiky)

m-1

collision: h(ke) = h(ks)

> hashing with chaining

> open addressing

® sFu X.Qiu

Hashing with Chaining

x| F Ta| F2L 1] /]

k]

] T Th] 7]
> SEARCH
> INSERT
> DELETE

® SFuU X.Qiu

load factor: o = average # elements stored in a chain

= =, where n = # element
simple uniform hashing: the probability of hashing any key to any
of the m slots is identical
> E["j] =

assume h(k) can be computed in O(1)

= a, where n; = length of T7[j]

Theorem

SEARCH takes average-case time ©(1 + «), under simple uniform hashing.

> consider unsuccessful search (easy) and successful search

m SFU X.Qiu 5 Of 13

let x; = ith element inserted to the table and z;.key = k;

1, if h(k:) = h(k;)
0, else

Xij = I{h(ki) = h(kj)} = {

under uniform hashing, Pr{h(k;) = h(k;)} = L

m

E[Xij]=%'1+(lf%)~():%

> if k; is in front of k; in linked list, then j > i 41
> search all keys takes T}, := E [Z;‘:l(l +2 i Xij)}

6]

In — a_ o
> one (successful) search takes <2 =14 9 —

m SFU X.Qiu 6 Of 13

Hash Functions

what makes a good hash function?
> satisfies (approximately) simple uniform hashing

> computable in constant time

Example

If k is uniformly distributed in [0,1), then h(k) = |km| is good.

> division method: h(k) =k mod m, where m is prime
> avoid “patterns”: want h(k) to depend on all bits of k

> multiplication method: h(k) = |[m(kA mod 1)], where
0 < A< 1andm is not critical

> universal hashing: randomly choose h from its family

> character keys can be transformed into integer keys

m SFU X.Qiu 7 Of 13

Interpreting Keys as Natural Numbers

decimal: 1234 =1 x 103 +2x1024+3x 10+4

> characters: pt
> p=112 and t=116 in ASCII character set
> transform (112,116) into radix-128 integer

pt =112 x 128 + 116 = 14452

@ SFU X.Qiu 8 Of 13

Open Addressing

recall direct addressing

-
N

key satellite data

1]
1
2
3

G A W N H O

N AN N SN

> open addressing: all elements occupy hash table itself (a < 1)
> no linked lists

> may get overflow of memories

m SFU X.Qiu 9 Of 13

Open Addressing

hash function: h: U x {0,1,...,m —1} = {0,1,...,m — 1} s.t.
the probe sequence

(k) := (h(k,0), h(k,1), ..., h(k,m — 1))
is a permutation of (0,1,...,m — 1)

> # permutations = m!

> uniform hashing: Vk, m(k) has the same chance to be any of
the m! permutations

(U] SFU X.Qiu 10 of 13

Insertion

HASH-INSERT(T', k)

fori=0tom—1do
J = h(k,);
if T'[j] == nil then

QA W N =

T[j] = k;
return j;

6 error “hash table overflow";

(U] SFU X.Qiu 11 of 13

HASH-SEARCH(T, k)

1 fori=0tom—1do
2 J = h(k,1);

3 if T[j] == k then
4 L return j;

5 if T[j] ==nil then
6 L return nil;

7 return nil;

(U] SFU X.Qiu 12 of 13

to delete a key stored in T'[i], can we simply set 7'[i] =nil?

h(k1,0) = h(k2,0)

B[] ek
--- delete k1 searching k2 returns nil

solutions
> search the whole table in O(m) bad
> use special value “deleted” and modify insertion properly

> with searching time O(n) also bad

(U] SFU X.Qiu 13 of 13

	Hash Table
	Hashing with Chaining
	Open Addressing

