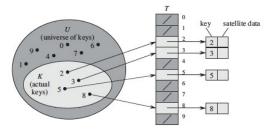
CMPT307: Hash Tables

Xian Qiu

Simon Fraser University

Direct Address Tables

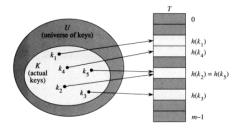
- $\,\,\,\,\,\,\,\,\,$ dynamic set with key universe $U=\{0,1,\ldots,N-1\}$
- ▷ assume unique key values



- \triangleright direct address table (array) T[0.., N-1]
- ightharpoonup Search, Insert and Delete take O(1)

Hash Table

hush function: $h: U \rightarrow \{0, 1, \dots, m-1\}$



collision: $h(k_2) = h(k_5)$

- ▷ hashing with chaining
- ▷ open addressing

Hashing with Chaining



- SEARCH
- Insert
- Delete

Analysis

load factor: $\alpha = \text{average } \# \text{ elements stored in a chain}$ $= \frac{n}{m} \text{, where } n = \# \text{ element}$

simple uniform hashing: the probability of hashing any key to any of the m slots is identical

- $\triangleright E[n_j] = \frac{n}{m} = \alpha$, where $n_j = \text{length of } T[j]$
- $\,\,\,\,\,\,\,$ assume h(k) can be computed in O(1)

Theorem

SEARCH takes average-case time $\Theta(1+\alpha)$, under simple uniform hashing.

Analysis

let $x_i = i$ th element inserted to the table and x_i .key $= k_i$

$$X_{ij} = \mathbf{I}\{h(k_i) = h(k_j)\} = \begin{cases} 1, & \text{if } h(k_i) = h(k_j) \\ 0, & \text{else} \end{cases}$$

under uniform hashing, $\Pr\left\{h(k_i) = h(k_j)\right\} = \frac{1}{m}$

$$\mathbb{E}[X_{ij}] = \frac{1}{m} \cdot 1 + \left(1 - \frac{1}{m}\right) \cdot 0 = \frac{1}{m}$$

- \triangleright if k_j is in front of k_i in linked list, then $j \ge i+1$
- hd > search all keys takes $T_n := \mathbb{E}\left[\sum_{i=1}^n (1 + \sum_{j=i+1}^n X_{ij})\right]$
- ho one (successful) search takes $rac{T_n}{n}=1+rac{lpha}{2}-rac{lpha}{2n}$

Hash Functions

what makes a good hash function?

- > satisfies (approximately) simple uniform hashing

Example

If k is uniformly distributed in [0,1), then $h(k)=\lfloor km\rfloor$ is good.

- \triangleright division method: $h(k) = k \mod m$, where m is prime
- $\,dash\,$ avoid "patterns": want h(k) to depend on all bits of k
- ho multiplication method: $h(k) = \lfloor m(kA \mod 1) \rfloor$, where 0 < A < 1 and m is not critical
- riangle universal hashing: randomly choose h from its family ${\cal H}$
- ▷ character keys can be transformed into integer keys

Interpreting Keys as Natural Numbers

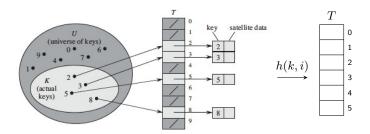
decimal:
$$1234 = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10 + 4$$

- ▷ characters: pt
- p=112 and t=116 in ASCII character set
- ⊳ transform (112,116) into radix-128 integer

$$\mathtt{pt} = 112 \times 128 + 116 = 14452$$

Open Addressing

recall direct addressing



- \triangleright open addressing: all elements occupy hash table itself ($\alpha \le 1$)
- ▷ no linked lists

Open Addressing

hash function: $h: U \times \{0,1,\ldots,m-1\} \to \{0,1,\ldots,m-1\}$ s.t. the probe sequence

$$\pi(k) := \langle h(k,0), h(k,1), \dots, h(k,m-1) \rangle$$

is a permutation of $\langle 0, 1, \dots, m-1 \rangle$

- \triangleright # permutations = m!
- ightharpoonup uniform hashing: $\forall k,\ \pi(k)$ has the same chance to be any of the m! permutations

Insertion

Hash-Insert(T, k)

```
\begin{array}{c|cccc} \mathbf{1} & \mathbf{for} \ i = 0 \ to \ m-1 \ \mathbf{do} \\ \mathbf{2} & j = h(k,i); \\ \mathbf{3} & \mathbf{if} \ T[j] == \mathit{nil} \ \mathbf{then} \\ \mathbf{4} & T[j] = k; \\ \mathbf{5} & \mathbf{return} \ j; \end{array}
```

6 error "hash table overflow";

Search

Hash-Search(T,k)

Deletion

to delete a key stored in T[i], can we simply set T[i] = nil?

$$h(k_1,0)=h(k_2,0)$$

$$\hline egin{array}{|c|c|c|c|c|}\hline k_1 & k_2 & & & & \\\hline \hline k_2 & & & & & \\\hline \hline & k_2 & & & & \\\hline \hline & & & & & \\\hline & & & & & \\\hline \end{array}$$
 delete k_1 searching k_2 returns nil

solutions

 \triangleright search the whole table in O(m)

- bad
- ▶ use special value "deleted" and modify insertion properly

also bad