CMPT307: Tutorial 2

Xian Qiu

Simon Fraser University

Data Structures

- b dynamic sets:
 c dynamic sets:
 b dynamic sets:
 c dynamic set:
 c dynamic sets:
 c dynamic sets:
 c dynamic sets:
 c dynamic set:
 d dynamic
 - * linked lists
 - * hash tables: hashing with chaining and open addressing
 - * binary search trees: rotations
 - * red-black trees
- binary heap/priority queues: heap-sort, MST, shortest paths
- disjoint sets: connected components, testing cycles, MST
- □ amortized analysis
 - * aggregate analysis
 - * accounting method
 - * potential function method

Sorting/Order Statistics

- ▷ insertion sort: running time is not asymptotically optimal
- ▷ heap sort: binary heap data structure
- □ quick sort: divide-and-conquer, asymptotically optimal on average
- ▷ lower bound of comparison sort
- \triangleright radix sort: beat $O(n \log n)$ for k constant (using stable sort)
- ▷ order statistics: divide-and-conquer

Graph Problems

- ▷ elementary graph algorithms
 - * BFS: unweighted shortest path, matching
 - * DFS: topological sorting, strongly connected components
- → MST: greedy (graph cut)
- ▷ shortest paths: Relax, dynamic programming
- maximum bipartite matching: augmenting paths (optimal condition)

Algorithm Design

- ▷ divide-and-conquer: sorting, order statistics, maximum subarray, (square) matrix multiplication
- dynamic programming: rod cutting, matrix-chain multiplication, longest common subsequence, optimal binary search tree
- greedy algorithm: activity selection, Huffman code, MST, matroids

Complexity

- polynomial time algorithms
- \triangleright complexity classes: $\mathcal{P}, \mathcal{NP}, \text{co-}\mathcal{NP}$ and NP-completeness
- > polynomial time reductions
- ▷ basic NP-complete problems
- $\triangleright \mathcal{P} = \mathcal{NP}$?

open, but most believe not

Approximation Algorithms

- ▷ no need to prove optimality, feasibility is often easy
- often easy to show that the running time is polynomial
- ▶ want approximation ratio as close to lower bound as possible important and often hard

About the Final Exam

COURSE	DAY	DATE	TIME	ROOM	TYPE
cmpt 307-d300	Friday	Dec 16	08:30-11:30	SWH10081	closed exam

- office hours on Dec 12, starting from 13:00
 - * if no students come, it ends at 14:00
 - * other time by appointment
- coverage: all lecture contents (chapters/sections not covered by lectures are not required)

Q. Types

- running time analysis
- data structures
- algorithm design
- complexity

Running Time Analysis

- ▷ amortized analysis: analyze the amortized cost
- ▷ worst-case: may need to use the amortized cost
- ▷ average-case
 - 1. make reasonable assumption on input (often uniform distribution)
 - 2. define suitable indicator random variable X_i , $P(X_i = 1) = ?$
 - 3. represent the running time T as a function of X_i , say $T=f(X_1,X_2,...)$
 - 4. compute $\mathbb{E}[T]$

Data Structures

- ▷ average-case running time (probabilistic analysis)
- amortized costs
- ▷ (balanced) binary search trees: rotations
- ⊳ heaps/priority queues
- disjoint sets

Algorithm Design

- 1. describe an algorithm (or write pseudocode)
- 2. the correctness is often straightforward, but you must analyze the running time
- 3. for recurrences, you should be able to use the three approaches (master theorem will be presented as appendix to you)

▷ dynamic programming

- 1. derive a recursive formula (including boundary conditions)
- 2. optimal substructure must be formally proved (need verify feasibility when using cut-and-paste argument)
- 3. analyze the running time based on the recursive formula
- no need to write pseudocode or to construct optimal solution if not indicated

Algorithm Design

- - 1. describe a greedy strategy and analyze the running time (often straightforward)
 - 2. prove the correctness (important)
 - you may also be asked to formulate the problem as a standard matroid maximization problem, so you also need to prove that the system is a matroid
- ▷ approximation algorithm
 - 1. describe an algorithm and analyze the running time
 - 2. analyze the approximation ratio (important)

Complexity

 $\triangleright L \in \mathcal{NP} \text{ or co-} \mathcal{NP}$?

- short and checkable certificate
- \triangleright show that decision problem B is NP-complete
 - 1. show that $B \in \mathcal{NP}$
 - 2. you may use any known NP-complete problem A and show that $A \leq_P B$: must check that the reduction is correct and can be done in polynomial time