CMPT307: NP-Completeness Proofs

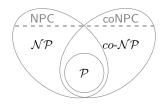
Week 13-2

Xian Qiu

Simon Fraser University

\mathcal{P} , \mathcal{NP} , co- \mathcal{NP}

Theorem. $\mathcal{P} \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$



Open questions

ho $\mathcal{P}=\mathcal{NP}$? consensus opinion: no one of the seven millennium prize problems of CMI (worth 1,000,000\$)

$$\triangleright \mathcal{P} = \mathcal{NP} \cap co\text{-}\mathcal{NP}?$$

Formula Satisfiability

given a formula F in conjunctive normal form (CNF)

- \triangleright literals: $x_1, \ldots, x_n \in \{\text{true}, \text{false}\}$
- \triangleright clauses: C_1, \ldots, C_m of disjunction of literals

$$C_i = x_1 \vee \bar{x}_3 \vee \ldots \vee x_7$$

 \triangleright formula: $F = C_1 \land C_2 \land \ldots \land C_m$

The satisfiability problem (SAT)

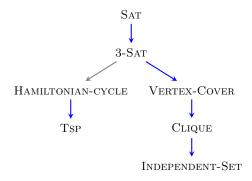
does there exist $x \in \{\text{true}, \text{false}\}^n$ such that F(x) = true?

also denote by SAT the corresponding language

3-SAT: SAT by restricting each clause with exactly 3 literals

NP-complete Problems

Theorem (S.A. Cook, 1971). SAT is NP-complete.



3-Sat $\in \mathcal{NP}$

- \triangleright a certificate is a vector $x \in \{\text{true}, \text{false}\}^n \text{ s.t. } F(x) = \text{true}$
- $\triangleright x$ is poly-size and F(x) can be computed in poly-time

 $SAT \leq_{\mathsf{P}} 3\text{-}SAT$

- 1. start with an arbitrary SAT instance I
- 2. construct a 3-SAT instance I'
- 3. show that $I = \text{yes} \Leftrightarrow I' = \text{yes}$

let F be an arbitrary CNF formula

$$F = C_1 \wedge C_2 \wedge \ldots \wedge C_m$$

idea: transform C_i with $|C_i| \neq 3$ into clauses of 3 literals each

consider any clause $C_i = (x_{i_1} \lor x_{i_2} \lor \ldots \lor x_{i_k})$ of F

case 1: k = 3, done

case 2: k=2, introduce a variable y_{i_1} and replace C_i by

$$C_i^1 = (x_{i_1} \lor x_{i_2} \lor y_{i_1}), \quad C_i^2 = (x_{i_1} \lor x_{i_2} \lor \bar{y}_{i_1})$$

 $\triangleright C_i = \mathsf{true} \Leftrightarrow C_i^1 \wedge C_i^2 = \mathsf{true}$

case 4: k=1, introduce two variables y_{i_1},y_{i_2} and replace C_i by

$$C_i^1 = (x_{i_1} \vee y_{i_1} \vee y_{i_2}), \quad C_i^2 = (x_{i_1} \vee y_{i_1} \vee \bar{y}_{i_2})$$

$$C_i^3 = (x_{i_1} \vee \bar{y}_{i_1} \vee y_{i_2}), \quad C_i^4 = (x_{i_1} \vee \bar{y}_{i_1} \vee \bar{y}_{i_2})$$

 $\triangleright C_i = \mathsf{true} \Leftrightarrow C_i^1 \wedge C_i^2 \wedge C_i^3 \wedge C_i^4 = \mathsf{true}$

case 4: $k \ge 4$, first introduce a variable y_{i_1}

$$C_i = (\underbrace{x_{i_1} \lor x_{i_2}}_{y_{i_1}} \lor \dots \lor x_{i_k})$$

and replace C_i by C_i^1 and C_i' , where C_i' has k-1 literals

$$C_i^1 = (x_{i_1} \lor x_{i_2} \lor y_{i_1}), \quad \underline{C_i'} = (\bar{y}_{i_1} \lor x_{i_3} \lor \dots \lor x_{i_k})$$

- $ho \ C_i = \mathsf{true} \Leftrightarrow C_i^1 \wedge C_i' = \mathsf{true}$
- $\,\vartriangleright\,$ keep doing this for C_i' until it has 3 literals (introducing k-3 variables and k-2 clauses)

$$F = C_1 \wedge C_2 \wedge \dots C_m$$
 SAT
$$F' = (C_1^1 \wedge C_1^2 \wedge \dots \wedge C_1^{i_1}) \wedge (C_2^1 \wedge C_2^2 \wedge \dots \wedge C_2^{i_2})$$

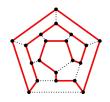
$$\wedge \dots \wedge (C_m^1 \wedge C_m^2 \wedge \dots \wedge C_m^{i_m})$$
 3-SAT
$$F = \mathsf{true} \Leftrightarrow F' = \mathsf{true}$$

the reduction is polynomial time

- \triangleright each C_i has at most n literals, thus introducing O(n) literals and clauses
- ho m clauses in total, thus the reduction can be done in O(mn)

TSP is NP-complete

Hamiltonian-Cycle (HC): given an undirected graph G = (V, E), does it contain an HC?



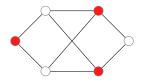
polynomial reduction

- \triangleright create a complete graph G' = (V, E') and assign distances $d(e) = 1, \forall e \in E, d(e) = 2$ otherwise
- $\triangleright G$ has an HC $\Leftrightarrow G'$ has tour of length n

Vertex Cover

Vertex-Cover

- \triangleright given: undirected G = (V, E) and integer k
- \triangleright question: does G contain a vertex cover of size at most k?



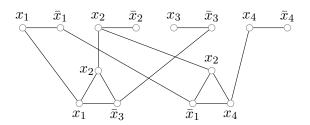
$3-Sat \leq_{\mathsf{P}} Vertex-Cover$

- $hiftharpoons F = C_1 \wedge C_2 \wedge \ldots \wedge C_m \longmapsto \mathsf{graph}\ G$
- ▷ how to define vertices and edges?

VERTEX-COVER is NP-complete

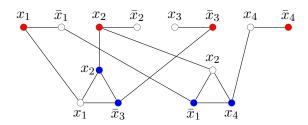
variable gadegt: $x \to \frac{x}{\sqrt{\bar{x}}}$ connect "x-x" clause gadegt: $C = (\bar{x} \lor y \lor z) \to y$

example: $F = (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor x_4)$



Claim. $F = \text{true} \Leftrightarrow G$ has a vertex cover C of size n + 2m.

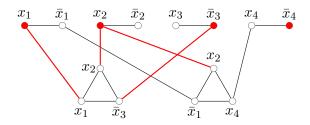
Necessity



 $F = \mathsf{true} \Rightarrow x_i \text{ or } \bar{x}_i \text{ must be true}$

- \triangleright $C_1 = \{$ true vertices of variable gadets $\}$
- $hd C_2 = \{ \text{remaining vertices of clause gadgets} \}$
- $\triangleright C = C_1 \cup C_2$ is a vertex cover with |C| = n + 2m

Sufficiency



- $|C| = n + 2m \Rightarrow 2$ nodes per clause, 1 node per variable gadget
 - > set covered nodes in variable gadgets to be true (red nodes)
 - b the assignment is feasible as no conflict
 conflict
 - ▷ each clause gadget has 3 "x-x edges": at least one edge is covered by a red node

polynomial time reduction?