CMPT307: Complexity Classes: \mathcal{P} and \mathcal{NP}

Week 13-1

Xian Qiu

Simon Fraser University

 $\triangleright\,$ an alphabet Σ is a finite set of symbols

 $\{0,1\}, \quad \{\mathsf{T},\mathsf{F}\}, \quad \{a,b,\ldots,z\}, \quad \mathbb{N}$

▷ a string x is a finite sequence of symbols from some alphabet 10011010010, asdfghjkl, ϵ (empty string)

- $\,\vartriangleright\,$ a language L over an alphabet Σ is a set of strings made up of symbols from Σ
- $\triangleright \ \Sigma^* =$ the language of all strings over Σ

 $\Sigma = \{0, 1\}, \quad \Sigma^* = \{\epsilon, 0, 1, 01, 10, 11, 000, \ldots\}$

Decision Problems

HAMILTONIAN-CYCLE

- \triangleright given: undirected graph G = (V, E)
- \triangleright question: does G contain a Hamiltonian cycle?

we can characterize a decision problem by its yes-instances

$$L = \begin{cases} G & \text{is an undirected graph} \\ G & \text{contains a Hamiltonian cycle} \end{cases}$$

- $\triangleright~$ binary encoding $\Sigma=\{0,1\}$
- \triangleright a decision problem Q can be viewed as a language L over Σ such that $L=\{x\in \Sigma^*\mid Q(x)=1\}$
- \triangleright Hamiltonian Cycle: given $x \in \Sigma^*$, $x \in L$?

X.Qiu 3 of 14

Decision Problems

Tsp

- $\triangleright~$ given: undirected graph G=(V,E) and distance function $c:E\to \mathbb{Z}^+$
- \triangleright question: does there exist a Hamiltonian cycle in G of total length $\leq k$?

Prime

given a natural number n, is n a prime number?

Path

- \triangleright given: undirected graph G = (V, E) and $s, t \in V$ and an integer k > 0
- \triangleright question: does there exist an *s*-*t* path with no more than *k* edges?

- \triangleright given language L and $x \in \Sigma^* = \{0, 1\}^*$, is $x \in L$?
- $\,\triangleright\,$ algorithm \mathbbm{A} accepts a string $x\in\Sigma^*$ if the output $\mathbbm{A}(x)=1$

$$\mathcal{P} = \left\{ L \middle| \begin{array}{c} \mathbb{A} \text{ is a polynomial time algorithm} \\ x \in L \Leftrightarrow \mathbb{A} \text{ accepts } x \end{array} \right\}$$

- $\triangleright \ \mathcal{P}$ is the set of decision problems which can be solved in polynomial time
- $\triangleright \ \operatorname{Path} \in \mathcal{P}$
- \triangleright what about $Tsp?\,$ poly-time algorithm not known, but a proof can be verified in poly-time

A Proof System

- \triangleright statement: $x \in L$ or $x \notin L$
- \triangleright prover: writes down a proof y
- ▷ verifier: checks the statement/proof, accepting or rejecting

$\mathsf{Class}\;\mathcal{NP}$

- $\triangleright\,$ verifier $\mathbb V\!\!:$ polynomial time algorithm
- \triangleright prover \mathbb{P} : arbitrarily powerful

Class \mathcal{NP} (non-deterministic polynomial-time)

- a language $L \in \mathcal{NP}$ if and only if
 - $\lor \forall x \in L, \mathbb{P} \text{ can write a proof } y \text{ of length } \operatorname{\mathsf{poly}}(|x|) \text{ that } \mathbb{V} \text{ accepts}$
 - $\,\triangleright \ \, \forall x \not\in L \text{, no matter what poly}(|x|) \text{-length proof } \mathbb{P} \text{ writes, } \mathbb{V} \text{ rejects}$
 - $\triangleright\,$ a $\operatorname{certificate}$ is a proof y such that $\mathbb V$ accepts x
 - $\triangleright~\mathcal{NP}$ is a class of decision problems which admit short and checkable certificate
 - $\triangleright \ \mathcal{P} \subseteq \mathcal{NP}$

Examples

$\mathrm{Hamiltonian}\text{-}\mathrm{Cycle}\in\mathcal{NP}$

- $\triangleright \mathbb{P}$ writes down a proof y (of polynomial size in |G|)
- $\,\triangleright\,\,\mathbb{V}$ checks y and returns "yes" if y is a cycle and y is Hamiltonian
- ▷ a certificate is a Hamiltotian cycle

- \triangleright short: Hamiltotian cycle has size O(n)
- \triangleright checkable: \mathbb{V} can verify a Hamiltonian cycle in O(n)

Examples

Vertex-Cover $\in \mathcal{NP}$

- $\triangleright\;$ input: undirected graph G and integer k>0
- \triangleright question: does exist a vertex cover of G with size $\leq k$?

 $\triangleright \ C \subseteq V \text{ is a vertex cover if } C \text{ "covers" } E$

- $\,\triangleright\,$ a certificate is a vertex set C s.t. $|C| \leq k$ and C covers E
- $\triangleright~\mathbb{V}$ can check whether C covers E in poly-time

 $\mathrm{PRIME} \in \mathcal{NP}?$

▷ yes, but a certificate is non-trivial Pratt, SIAM J. on Computing, 1975

CO-PRIME: is $n \in \mathbb{N}$ not a prime number?

- $\triangleright\ {\rm CO-PRIME}$ consists of all no-instances of ${\rm PRIME}$
- $\triangleright\,$ the language of ${\rm CO-PRIME}$ is the complement of the language of ${\rm PRIME}$
- \triangleright a short, checkable certificate is a number $d \in \mathbb{N}$ s.t. $\frac{n}{d} = 0$
- $\triangleright \ \operatorname{CO-PRIME} \in \mathcal{NP}$

let \bar{L} be the complement of L

$$\mathsf{co-}\mathcal{NP} = \left\{ L \mid \bar{L} \in \mathcal{NP} \right\}$$

CO-HAMILTONIAN-CYCLE

does G not contain a Hamiltonian cycle?

- ▷ the language of CO-HAMILTONIAN-CYCLE is the set of graphs which do not have a Hamiltonian cycle
- \triangleright CO-Hamiltonian-Cycle $\in \mathcal{NP}$?

unknown

 $\triangleright \ \operatorname{Prime} \in \mathsf{co-}\mathcal{NP}$

Polynomial Time Reduction

 $L_1, L_2 = \mathsf{languages}$

L_1 is polynomially reducible to L_2 if

- $\triangleright \exists$ poly-time computable function $f: \{0,1\}^* \to \{0,1\}^*$
- $\triangleright \ x \in L_1 \Leftrightarrow f(x) \in L_2$

denoted by $L_1 \leq_{\mathsf{P}} L_2$

NP-completeness

assume $L_1 \leq_{\mathsf{P}} L_2$ and consider decision problems

 $P: x_1 \in L_1? \quad Q: x_2 \in L_2?$

- \triangleright P is polynomially reducible to Q
- $\triangleright Q$ is as hard as P
- a language $L \subseteq \{0,1\}^*$ is NP-complete if
 - 1. $L \in \mathcal{NP}$ and
 - 2. $L' \leq_{\mathsf{P}} L$ for every $L' \in \mathcal{NP}$
 - $\triangleright\,$ if L is NP-complete, then the associated decision problem is the hardest among those in \mathcal{NP}
 - \triangleright L is NP-hard if 2 is satisfied (1 not necessarily)

NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people." Garey & Johnson (1979): Computers and Intractability

