CMPT307: Complexity Classes: P and NP

Week 13-1

Xian Qiu

Simon Fraser University

Strings and Languages

> an alphabet X is a finite set of symbols
{0,1}, A{T,F}, {a,b,...,z}, N
> a string x is a finite sequence of symbols from some alphabet
10011010010, asdfghjkl, € (empty string)

> a language L over an alphabet ¥ is a set of strings made up
of symbols from X

> 3* = the language of all strings over X

¥ ={0,1}, ¥*={e0,1,01,10,11,000,...}

® sru X.Qiu

Decision Problems

HAMILTONIAN-CYCLE

> given: undirected graph G = (V, E)

> question: does G contain a Hamiltonian cycle?

we can characterize a decision problem by its yes-instances

L-la G is an undirected graph
B G contains a Hamiltonian cycle

> binary encoding ¥ = {0,1}

> a decision problem () can be viewed as a language L over X
such that L = {x € ¥* | Q(z) = 1}

> HaMILTONIAN CYCLE: given x € 3%, x € L?

® sru X.Qiu

Decision Problems

Tsp
> given: undirected graph G = (V, E) and distance function ¢: E — Z%

> question: does there exist a Hamiltonian cycle in G of total length < k?

PRIME

given a natural number n, is n a prime number?

PATH

> given: undirected graph G = (V, E) and s,t € V and an integer k > 0

> question: does there exist an s-t path with no more than k edges?

® sFU X.Qiu

> given language L and x € ¥* = {0,1}", is x € L?
> algorithm A accepts a string x € ¥* if the output A(z) =1

p:{L

> P is the set of decision problems which can be solved in
polynomial time

r € L & A accepts =

A is a polynomial time algorithm}

> PATH € P

> what about T'sp? poly-time algorithm not known, but a
proof can be verified in poly-time

® sru X.Qiu

A Proof System

> statement: x € Lorx ¢ L
> prover: writes down a proof y

> verifier: checks the statement/proof, accepting or rejecting

input az
proof
verifier
\%
work tape
[output

® sru X.Qiu

Class NP

> verifier V: polynomial time algorithm

> prover IP: arbitrarily powerful

Class NP (non-deterministic polynomial-time)

a language L € NP if and only if
> Vx € L, P can write a proof y of length poly(|z|) that V accepts
> Vz & L, no matter what poly(|z|)-length proof P writes, V rejects

> a certificate is a proof y such that V accepts x

> NP is a class of decision problems which admit short and
checkable certificate

> P CNP

® sru X.Qiu

Examples

HAMILTONIAN-CYCLE € NP

> [P writes down a proof y (of polynomial size in |])

> V checks y and returns “yes" if y is a cycle and y is
Hamiltonian

> a certificate is a Hamiltotian cycle

> short: Hamiltotian cycle has size O(n)

> checkable: V can verify a Hamiltonian cycle in O(n)

® sru X.Qiu

VERTEX-COVER € NP

> input: undirected graph G and integer £ > 0

> question: does exist a vertex cover of G with size < k7?

> C' C V is a vertex cover if C' “covers’ E

> a certificate is a vertex set C' s.t. |C| < k and C covers E

> V can check whether C' covers E in poly-time

® sru X.Qiu

PRIME € N'P?

> yes, but a certificate is non-trivial Pratt, SIAM J. on Computing, 1975

CO-PRIME: is n € N not a prime number?
> CO-PRIME consists of all no-instances of PRIME

> the language of CO-PRIME is the complement of the

language of PRIME
> a short, checkable certificate is a number d € Nsit. 5 =0

> Cco-PRIME € NP

® SFU X.Qiu

Class co-NP

let L be the complement of L
coNP={L|LecNP}

CcO-HAMILTONIAN-CYCLE

does GG not contain a Hamiltonian cycle?

> the language of co-Hammronian-CycLE is the set of graphs
which do not have a Hamiltonian cycle

> co-HAMILTONIAN-CycLE € N'P? unknown

> PRIME € co-NP

® sru X.Qiu

Polynomial Time Reduction

L1, Ly = languages

L1 is polynomially reducible to Lo if
> 3 poly-time computable function f: {0,1}" — {0,1}"
> x €Ly < f(x) € Ly

{0,1}" '*{0,1}*

denoted by L1 <p Lo

® sru X.Qiu

NP-completeness

assume L1 <p Lo and consider decision problems

P:x € Ly? Q:Z‘QGLQ?

> P is polynomially reducible to @
> @ is as hard as P

a language L C {0,1}" is NP-complete if
1. Le NP and
2. L' <p L for every L' € N'P

> if L is NP-complete, then the associated decision problem is
the hardest among those in N'P

> L is NP-hard if 2 is satisfied (1 not necessarily)

® sru X.Qiu

NP-completeness

GOIMLLL L L

“l can’t find an efficient algorithm, but neither can all these
famous people.” Garey & Johnson (1979): Computers and Intractability

® SFU X.Qiu

