CMPT 307: Polynomial Time Algorithms

Week 12-3

Xian Qiu

Simon Fraser University

Encoding Length

how to measure the size of an instance? encoding length of input

encoding graphs: G = (V, E)
> adjacency matrix: ©(n?)
> adjacency lists: ©(n + m)
encoding numbers: natural number n
> binary: ©(logn)
> k-ary (k> 1): O(log,n)

® sru X.Qiu

Polynomial Time Algorithms

> P — optimization problem A — algorithm for P
> [—instance of P |I| — encoding length of
> ta(I) — running time of algorithm A for instance I

Polynomial time algorithm

A is a polynomial time algorithm for P if for any instance I € P
> A terminates with a solution sy of I;

> there is a polynomial function p such that ta(I) € O(p(|1])).

> A solves P if sy is optimal for all T
> polynomial time algorithms are often regarded as “efficient”

® sru X.Qiu

> P with input: n natural numbers, using binary encoding
> Aj runs in O(n!%)
> Ag runs in O(nK), where K is the largest number of input

consider any instance I € P, then |I| > {n,log K}

> nl%0 < |I\100, thus A; is polynomial time algorithm
> nK = n2'%e K if |I| =log K, then nK = n2!/l > 2l +, (I
is exponential in ||, thus Ay is not polynomial

is COUNTING-SORT a polynomial time algorithm?

® sru X.Qiu

PRIME: is n € N a prime number?

PRIMALITY-TEST(n)

1 fori=2ton—1do
2 L if n mod i =0 then

w

L return false;

4 return true;

> is PRIMALITY-TEST polynomial time?
> binary encoding: no!
> unary encoding: yes!

> for polynomial algorithms, encodings do not matter as long as
they are “polynomially equivalent”

® sru X.Qiu

Polynomial Equivalence

> P — optimization problem I — instance of P
> encodings E1, Ey of lengths ||, |I|,, forany I € P

Definition

E4 and E5 are polynomially equivalent < 3 polynomial functions p1, p2 s.t.,

[I]; < p1(|1],) and |I|, < p2(|I];), VI € P.

> adjacency matrix and adjacency list are polynomially
equivalent encodings for graphs

> all k-ary (k > 1 constant) encodings for natural numbers are
polynomially equivalent log, n =logn/logk

> what about unary?

® sru X.Qiu

Hard Problems

traveling salesman problem (TSP)

> no polynomial (exact) algorithm has been found yet
> even fail to disprove the existence of such algorithms

> another perspective is to look at its level of difficulty

® sru X.Qiu

Decision Problem

Optimization Problem (OPT)

Given an instance I = (S, f), find a solution s* € S minimizing f(s).

Decision Problem (DEC)

Given an instance I = (.5, f) and an integer k, decide if there exists a solution
s € S with f(s) <k.

> [is called a yes-instance if there exists such a solution,
otherwise I is a no-instance

> in other words: a decision problem is a set of instances with
yes or no answer only

® sru X.Qiu

OPT & DEC

Observation

For many discrete optimization problems, if we can solve DEC in poly-time,
then we can solve OPT in poly-time.

knowing an algorithm for DEC, how to solve the OPT?

1. compute optimal solution value « for OPT, by binary search

2. construct an optimal solution w.r.t. «

® SFU X.Qiu

Example: Maximum Matching

DEC: given GG and integer k, 3 a matching of size > k7
know: algorithm A(G, k) tells us whether DEC is yes or no

SEARCH-MAX-VAL(G)

initialize: [a,b] = [0,n/2] ; // a<n/2
while b > a do

3 L k=1[(b—a)/2];

if A(G,k) = "yes”, then a :=k;
elseb:=k—1,

6 return qg;

> SEARCH-MAX-VAL(G) returns the size of maximum matching

> running time O(logn) x ta

® sru X.Qiu

Example: Maximum Matching

MAXIMUM-MATCHING(G)

o = SEARCH-MAX-VAL(G);
for each edge e € E do
if A(G —e,a) = yes then
L L G:=G—e¢

B W N =

5 return G.E;

> running time O(m + logn) x ta

> MAXIMUM-MATCHING is polynomial if A is polynomial

® sru X.Qiu

	Polynomial Time Algorithms

