
CMPT 307: Polynomial Time Algorithms
Week 12-3

Xian Qiu

Simon Fraser University

xianq@sfu.ca

Encoding Length

how to measure the size of an instance? encoding length of input

encoding graphs: G = (V,E)

. adjacency matrix: Θ(n2)

. adjacency lists: Θ(n+m)

encoding numbers: natural number n

. binary: Θ(log n)

. k-ary (k > 1): Θ(logk n)

2 of 11X.QiuSFUU

Polynomial Time Algorithms

. P – optimization problem A – algorithm for P

. I – instance of P |I| – encoding length of I

. tA(I) – running time of algorithm A for instance I

Polynomial time algorithm

A is a polynomial time algorithm for P if for any instance I ∈ P
. A terminates with a solution sI of I;

. there is a polynomial function p such that tA(I) ∈ O(p(|I|)).

. A solves P if sI is optimal for all I

. polynomial time algorithms are often regarded as “efficient”

3 of 11X.QiuSFUU

Examples

. P with input: n natural numbers, using binary encoding

. A1 runs in O(n100)

. A2 runs in O(nK), where K is the largest number of input

consider any instance I ∈ P , then |I| ≥ {n, logK}

. n100 ≤ |I|100, thus A1 is polynomial time algorithm

. nK = n2logK , if |I| = logK, then nK = n2|I| ≥ 2|I|, tA2(I)
is exponential in |I|, thus A2 is not polynomial

is Counting-Sort a polynomial time algorithm?

4 of 11X.QiuSFUU

Examples

Prime: is n ∈ N a prime number?

Primality-Test(n)

1 for i = 2 to n− 1 do
2 if n mod i = 0 then
3 return false;

4 return true;

. is Primality-Test polynomial time?

. binary encoding: no!

. unary encoding: yes!

. for polynomial algorithms, encodings do not matter as long as
they are “polynomially equivalent”

5 of 11X.QiuSFUU

Polynomial Equivalence

. P – optimization problem I – instance of P

. encodings E1, E2 of lengths |I|1, |I|2, for any I ∈ P

Definition

E1 and E2 are polynomially equivalent ⇔ ∃ polynomial functions p1, p2 s.t.,

|I|1 ≤ p1(|I|2) and |I|2 ≤ p2(|I|1), ∀I ∈ P.

. adjacency matrix and adjacency list are polynomially
equivalent encodings for graphs

. all k-ary (k > 1 constant) encodings for natural numbers are
polynomially equivalent logk n = log n/ log k

. what about unary?

6 of 11X.QiuSFUU

Hard Problems

traveling salesman problem (TSP)

0

1

2 3

4

5 6

. no polynomial (exact) algorithm has been found yet

. even fail to disprove the existence of such algorithms

. another perspective is to look at its level of difficulty

7 of 11X.QiuSFUU

Decision Problem

Optimization Problem (OPT)

Given an instance I = (S, f), find a solution s∗ ∈ S minimizing f(s).

Decision Problem (DEC)

Given an instance I = (S, f) and an integer k, decide if there exists a solution
s ∈ S with f(s) ≤ k.

. I is called a yes-instance if there exists such a solution,
otherwise I is a no-instance

. in other words: a decision problem is a set of instances with
yes or no answer only

8 of 11X.QiuSFUU

OPT & DEC

Observation

For many discrete optimization problems, if we can solve DEC in poly-time,
then we can solve OPT in poly-time.

knowing an algorithm for DEC, how to solve the OPT?

1. compute optimal solution value α for OPT, by binary search

2. construct an optimal solution w.r.t. α

9 of 11X.QiuSFUU

Example: Maximum Matching

DEC: given G and integer k, ∃ a matching of size ≥ k?

know: algorithm A(G, k) tells us whether DEC is yes or no

Search-Max-Val(G)

1 initialize: [a, b] = [0, n/2] ; // α ≤ n/2
2 while b > a do
3 k = b(b− a)/2c;
4 if A(G, k) = “yes”, then a := k;
5 else b := k − 1;

6 return a;

. Search-Max-Val(G) returns the size of maximum matching

. running time O(log n)× tA

10 of 11X.QiuSFUU

Example: Maximum Matching

Maximum-Matching(G)

1 α = Search-Max-Val(G);
2 for each edge e ∈ E do
3 if A(G− e, α) = yes then
4 G := G− e;

5 return G.E;

. running time O(m+ log n)× tA

. Maximum-Matching is polynomial if A is polynomial

11 of 11X.QiuSFUU

	Polynomial Time Algorithms

