
CMPT 307: Shortest Paths & Maximum Matchings
Week 12-2

Xian Qiu

Simon Fraser University

xianq@sfu.ca

All-pairs Shortest Path Problem

. given: digraph G = (V,E) and cost function c : E → R

. goal: find shortest s-t paths, for all (s, t) ∈ V × V

. run Bellman-Ford algorithm n times, with running time
O(n2m) (Θ(n4) for dense graphs)

. can we do better?

. dynamic programming

2 of 12X.QiuSFUU

All-pairs Shortest Path Problem

. given: digraph G = (V,E) and cost function c : E → R

. goal: find shortest s-t paths, for all (s, t) ∈ V × V

. run Bellman-Ford algorithm n times, with running time
O(n2m) (Θ(n4) for dense graphs)

. can we do better?

. dynamic programming

2 of 12X.QiuSFUU

All-pairs Shortest Path Problem

. given: digraph G = (V,E) and cost function c : E → R

. goal: find shortest s-t paths, for all (s, t) ∈ V × V

. run Bellman-Ford algorithm n times, with running time
O(n2m) (Θ(n4) for dense graphs)

. can we do better?

. dynamic programming

2 of 12X.QiuSFUU

All-pairs Shortest Path Problem

. given: digraph G = (V,E) and cost function c : E → R

. goal: find shortest s-t paths, for all (s, t) ∈ V × V

. run Bellman-Ford algorithm n times, with running time
O(n2m) (Θ(n4) for dense graphs)

. can we do better?

. dynamic programming

2 of 12X.QiuSFUU

Optimal Substructure

. consider a shortest (u, v)-path Puv

. with internal nodes ⊆ Vk := {1, 2, . . . , k}

. δk(u, v) = cost of path Puv

u ? vPuv

case 1: k is not an interior node of Puv

. δk(u, v) = δk−1(u, v)

case 2: k is an interior node of Puv

. δk(u, v) = δk−1(u, k) + δk−1(k, v)

3 of 12X.QiuSFUU

Optimal Substructure

. consider a shortest (u, v)-path Puv

. with internal nodes ⊆ Vk := {1, 2, . . . , k}

. δk(u, v) = cost of path Puv

u ? vPuv

case 1: k is not an interior node of Puv

. δk(u, v) = δk−1(u, v)

case 2: k is an interior node of Puv

. δk(u, v) = δk−1(u, k) + δk−1(k, v)

3 of 12X.QiuSFUU

Optimal Substructure

. consider a shortest (u, v)-path Puv

. with internal nodes ⊆ Vk := {1, 2, . . . , k}

. δk(u, v) = cost of path Puv

u ? vPuv

case 1: k is not an interior node of Puv

. δk(u, v) = δk−1(u, v)

case 2: k is an interior node of Puv

. δk(u, v) = δk−1(u, k) + δk−1(k, v)

3 of 12X.QiuSFUU

Optimal Substructure

. consider a shortest (u, v)-path Puv

. with internal nodes ⊆ Vk := {1, 2, . . . , k}

. δk(u, v) = cost of path Puv

u ? vPuv

case 1: k is not an interior node of Puv

. δk(u, v) = δk−1(u, v)

case 2: k is an interior node of Puv

. δk(u, v) = δk−1(u, k) + δk−1(k, v)

3 of 12X.QiuSFUU

Recursive Formula

δk(u, v) = min {δk−1(u, v), δk−1(u, k) + δk−1(k, v)} , k ≥ 1

boundary conditions

δ0(u, v) =


0, if u = v

c(u, v) if (u, v) ∈ E
∞ otherwise

running time: O(n3)

4 of 12X.QiuSFUU

Recursive Formula

δk(u, v) = min {δk−1(u, v), δk−1(u, k) + δk−1(k, v)} , k ≥ 1

boundary conditions

δ0(u, v) =


0, if u = v

c(u, v) if (u, v) ∈ E
∞ otherwise

running time: O(n3)

4 of 12X.QiuSFUU

Floyd-Warshall Algorithm

. input: a graph represented by (weighted) adjacency matrix W

Floyd-Warshall(W)

1 n = W.rows;

2 D(0) = W ; // boundary conditions

3 for k = 1 to n do

4 let Dk = (d
(k)
ij) be a new n× n matrix;

5 for i = 1 to n do
6 for j = 1 to n do

7 d
(k)
ij = min

{
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

}
;

. given i, j ∈ V , how to construct a shortest (i, j)-path?

5 of 12X.QiuSFUU

Floyd-Warshall Algorithm

. input: a graph represented by (weighted) adjacency matrix W

Floyd-Warshall(W)

1 n = W.rows;

2 D(0) = W ; // boundary conditions

3 for k = 1 to n do

4 let Dk = (d
(k)
ij) be a new n× n matrix;

5 for i = 1 to n do
6 for j = 1 to n do

7 d
(k)
ij = min

{
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

}
;

. given i, j ∈ V , how to construct a shortest (i, j)-path?

5 of 12X.QiuSFUU

Matching

given an undirected graph G = (V,E)

. a matching is a set M ⊆ E of pairwise non-incident edges

. perfect matching: |M | = |V | /2

. maximum matching is matching of maximal cardinality

maximal maximum

Maximum (cardinality) matching

. given: undirected graph G = (V,E)

. goal: compute a maximum matching M

6 of 12X.QiuSFUU

Matching

given an undirected graph G = (V,E)

. a matching is a set M ⊆ E of pairwise non-incident edges

. perfect matching: |M | = |V | /2

. maximum matching is matching of maximal cardinality

maximal maximum

Maximum (cardinality) matching

. given: undirected graph G = (V,E)

. goal: compute a maximum matching M

6 of 12X.QiuSFUU

Matching

given an undirected graph G = (V,E)

. a matching is a set M ⊆ E of pairwise non-incident edges

. perfect matching: |M | = |V | /2

. maximum matching is matching of maximal cardinality

maximal maximum

Maximum (cardinality) matching

. given: undirected graph G = (V,E)

. goal: compute a maximum matching M

6 of 12X.QiuSFUU

Matching

given an undirected graph G = (V,E)

. a matching is a set M ⊆ E of pairwise non-incident edges

. perfect matching: |M | = |V | /2

. maximum matching is matching of maximal cardinality

maximal maximum

Maximum (cardinality) matching

. given: undirected graph G = (V,E)

. goal: compute a maximum matching M

6 of 12X.QiuSFUU

Basic Idea

. greedy yields maximal matching, but needn’t be maximum

. idea: start with maximal matching, look for augmenting path

free free

6∈M

∈M

6∈M

7 of 12X.QiuSFUU

Basic Idea

. greedy yields maximal matching, but needn’t be maximum

. idea: start with maximal matching, look for augmenting path

free free

6∈M

∈M

6∈M

7 of 12X.QiuSFUU

Basic Idea

. greedy yields maximal matching, but needn’t be maximum

. idea: start with maximal matching, look for augmenting path

free free

6∈M

∈M

6∈M

7 of 12X.QiuSFUU

Augmenting Paths

M -alternating path

∈M 6∈M ∈M 6∈M

M -augmenting path

free free
6∈M ∈M 6∈M ∈M 6∈M

∈M 6∈M ∈M 6∈M ∈M

symmetric difference: M∆N = (M\N) ∪ (N\M), M,N ⊆ E

8 of 12X.QiuSFUU

Augmenting Paths

M -alternating path

∈M 6∈M ∈M 6∈M

M -augmenting path

free free
6∈M ∈M 6∈M ∈M 6∈M

∈M 6∈M ∈M 6∈M ∈M

symmetric difference: M∆N = (M\N) ∪ (N\M), M,N ⊆ E

8 of 12X.QiuSFUU

Augmenting Paths

M -alternating path

∈M 6∈M ∈M 6∈M

M -augmenting path

free free
6∈M ∈M 6∈M ∈M 6∈M

∈M 6∈M ∈M 6∈M ∈M

symmetric difference: M∆N = (M\N) ∪ (N\M), M,N ⊆ E

8 of 12X.QiuSFUU

Augmenting Paths

M -alternating path

∈M 6∈M ∈M 6∈M

M -augmenting path

free free
6∈M ∈M 6∈M ∈M 6∈M

∈M 6∈M ∈M 6∈M ∈M

symmetric difference: M∆N = (M\N) ∪ (N\M), M,N ⊆ E

8 of 12X.QiuSFUU

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M -augmenting path.

Proof

(⇒) trivial

(⇐) assume ∃M∗ with |M∗| > |M | and consider M∆M∗

. M∆M∗ contains node disjoint cycles and paths

∈M

∈M

M∗ 3 ∈M∗

∈M∗ ∈M ∈M∗

. each cycle has even number of edges

. exist a path P having |P ∩M∗| > |P ∩M | by assumption

. P is an M -augmenting path

9 of 12X.QiuSFUU

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M -augmenting path.

Proof

(⇒) trivial

(⇐) assume ∃M∗ with |M∗| > |M | and consider M∆M∗

. M∆M∗ contains node disjoint cycles and paths

∈M

∈M

M∗ 3 ∈M∗

∈M∗ ∈M ∈M∗

. each cycle has even number of edges

. exist a path P having |P ∩M∗| > |P ∩M | by assumption

. P is an M -augmenting path

9 of 12X.QiuSFUU

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M -augmenting path.

Proof

(⇒) trivial (⇐) assume ∃M∗ with |M∗| > |M | and consider M∆M∗

. M∆M∗ contains node disjoint cycles and paths

∈M

∈M

M∗ 3 ∈M∗

∈M∗ ∈M ∈M∗

. each cycle has even number of edges

. exist a path P having |P ∩M∗| > |P ∩M | by assumption

. P is an M -augmenting path

9 of 12X.QiuSFUU

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M -augmenting path.

Proof

(⇒) trivial (⇐) assume ∃M∗ with |M∗| > |M | and consider M∆M∗

. M∆M∗ contains node disjoint cycles and paths

∈M

∈M

M∗ 3 ∈M∗

∈M∗ ∈M ∈M∗

. each cycle has even number of edges

. exist a path P having |P ∩M∗| > |P ∩M | by assumption

. P is an M -augmenting path

9 of 12X.QiuSFUU

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M -augmenting path.

Proof

(⇒) trivial (⇐) assume ∃M∗ with |M∗| > |M | and consider M∆M∗

. M∆M∗ contains node disjoint cycles and paths

∈M

∈M

M∗ 3 ∈M∗

∈M∗ ∈M ∈M∗

. each cycle has even number of edges

. exist a path P having |P ∩M∗| > |P ∩M | by assumption

. P is an M -augmenting path

9 of 12X.QiuSFUU

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M -augmenting path.

Proof

(⇒) trivial (⇐) assume ∃M∗ with |M∗| > |M | and consider M∆M∗

. M∆M∗ contains node disjoint cycles and paths

∈M

∈M

M∗ 3 ∈M∗

∈M∗ ∈M ∈M∗

. each cycle has even number of edges

. exist a path P having |P ∩M∗| > |P ∩M | by assumption

. P is an M -augmenting path

9 of 12X.QiuSFUU

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M -augmenting path.

Proof

(⇒) trivial (⇐) assume ∃M∗ with |M∗| > |M | and consider M∆M∗

. M∆M∗ contains node disjoint cycles and paths

∈M

∈M

M∗ 3 ∈M∗

∈M∗ ∈M ∈M∗

. each cycle has even number of edges

. exist a path P having |P ∩M∗| > |P ∩M | by assumption

. P is an M -augmenting path

9 of 12X.QiuSFUU

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V2, E)

V1 V2

how to find M -augmenting paths?

. bipartite graphs do not have odd cycles (augmenting paths
have odd number of edges)

. start with a free node s ∈ V1 and search alternating path until
finding another free node t ∈ V2

10 of 12X.QiuSFUU

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V2, E)

V1 V2

how to find M -augmenting paths?

. bipartite graphs do not have odd cycles (augmenting paths
have odd number of edges)

. start with a free node s ∈ V1 and search alternating path until
finding another free node t ∈ V2

10 of 12X.QiuSFUU

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V2, E)

V1 V2

how to find M -augmenting paths?

. bipartite graphs do not have odd cycles (augmenting paths
have odd number of edges)

. start with a free node s ∈ V1 and search alternating path until
finding another free node t ∈ V2

10 of 12X.QiuSFUU

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V2, E)

V1 V2

how to find M -augmenting paths?

. bipartite graphs do not have odd cycles (augmenting paths
have odd number of edges)

. start with a free node s ∈ V1 and search alternating path until
finding another free node t ∈ V2

10 of 12X.QiuSFUU

Finding Augmenting Paths

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

1. construct an auxiliary digraph
D = (V,A), with (s, t) ∈ A if (s, t) 6∈M ,
(t, s) ∈ A otherwise

2. make BFS from any free node s1 ∈ V1

s1

t1

t3

s4

s5

t2

t4

s2

s3 t5

3. an M -augmenting path is found if exists

11 of 12X.QiuSFUU

Finding Augmenting Paths

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

1. construct an auxiliary digraph
D = (V,A), with (s, t) ∈ A if (s, t) 6∈M ,
(t, s) ∈ A otherwise

2. make BFS from any free node s1 ∈ V1

s1

t1

t3

s4

s5

t2

t4

s2

s3 t5

3. an M -augmenting path is found if exists

11 of 12X.QiuSFUU

Finding Augmenting Paths

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

1. construct an auxiliary digraph
D = (V,A), with (s, t) ∈ A if (s, t) 6∈M ,
(t, s) ∈ A otherwise

2. make BFS from any free node s1 ∈ V1

s1

t1

t3

s4

s5

t2

t4

s2

s3 t5

3. an M -augmenting path is found if exists

11 of 12X.QiuSFUU

Finding Augmenting Paths

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

1. construct an auxiliary digraph
D = (V,A), with (s, t) ∈ A if (s, t) 6∈M ,
(t, s) ∈ A otherwise

2. make BFS from any free node s1 ∈ V1

s1

t1

t3

s4

s5

t2

t4

s2

s3 t5

3. an M -augmenting path is found if exists

11 of 12X.QiuSFUU

Augmenting Path Algorithm

Bipartite-Mathcing(G)

1 M = ∅;
2 for all free node s ∈ V1 do
3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P 6= nil then
6 M := M∆E(P); // augment along P O(m)

. after augmentation: free nodes are matched and matched
nodes are still matched

. thus no augmenting paths at termination

. running time O(nm)

12 of 12X.QiuSFUU

Augmenting Path Algorithm

Bipartite-Mathcing(G)

1 M = ∅;
2 for all free node s ∈ V1 do
3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P 6= nil then
6 M := M∆E(P); // augment along P O(m)

. after augmentation: free nodes are matched and matched
nodes are still matched

. thus no augmenting paths at termination

. running time O(nm)

12 of 12X.QiuSFUU

Augmenting Path Algorithm

Bipartite-Mathcing(G)

1 M = ∅;
2 for all free node s ∈ V1 do
3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P 6= nil then
6 M := M∆E(P); // augment along P O(m)

. after augmentation: free nodes are matched and matched
nodes are still matched

. thus no augmenting paths at termination

. running time O(nm)

12 of 12X.QiuSFUU

Augmenting Path Algorithm

Bipartite-Mathcing(G)

1 M = ∅;
2 for all free node s ∈ V1 do
3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P 6= nil then
6 M := M∆E(P); // augment along P O(m)

. after augmentation: free nodes are matched and matched
nodes are still matched

. thus no augmenting paths at termination

. running time O(nm)

12 of 12X.QiuSFUU

	All-pairs Shortest Paths
	Maximum Matching

