CMPT 307: Shortest Paths & Maximum Matchings

Week 12-2

Xian Qiu

Simon Fraser University

All-pairs Shortest Path Problem

> given: digraph G = (V, E) and cost function ¢: £ — R
> goal: find shortest s-t paths, for all (s,t) € V x V

® SFU X.Qiu CASER

All-pairs Shortest Path Problem

> given: digraph G = (V, E) and cost function ¢: £ — R
> goal: find shortest s-t paths, for all (s,t) € V x V

> run Bellman-Ford algorithm n times, with running time
O(n?m) (©(n*) for dense graphs)

® SFU X.Qiu IR

All-pairs Shortest Path Problem

> given: digraph G = (V, E) and cost function ¢: £ — R
> goal: find shortest s-t paths, for all (s,t) € V x V

> run Bellman-Ford algorithm n times, with running time
O(n?m) (©(n*) for dense graphs)

> can we do better?

® SFU X.Qiu IR

All-pairs Shortest Path Problem

> given: digraph G = (V, E) and cost function ¢: £ — R
> goal: find shortest s-t paths, for all (s,t) € V x V

> run Bellman-Ford algorithm n times, with running time
O(n?m) (©(n*) for dense graphs)
> can we do better?

> dynamic programming

® SFU X.Qiu IR

Optimal Substructure

> consider a shortest (u,v)-path Py,
> with internal nodes C Vi, := {1,2,...,k}
> O (u,v) = cost of path P,,

P () @ ®

® SFU DOIITRN 3 of 12

Optimal Substructure

> consider a shortest (u,v)-path Py,
> with internal nodes C Vj, :={1,2,...,k}
> O (u,v) = cost of path P,,

P () @ ®

case 1: k is not an interior node of P,

case 2: k is an interior node of P,

® SFU X.Qiu ISR

Optimal Substructure

> consider a shortest (u,v)-path Py,
> with internal nodes C Vj, :={1,2,...,k}
> O (u,v) = cost of path P,,

P () @ ®

case 1: k is not an interior node of P,

> O (u,v) = 0p—1(u,v)

case 2: k is an interior node of P,

® SFU X.Qiu ISR

Optimal Substructure

> consider a shortest (u,v)-path Py,
> with internal nodes C Vj, :={1,2,...,k}
> O (u,v) = cost of path P,,

P () @ ®

case 1: k is not an interior node of P,

> O (u,v) = 0p—1(u,v)

case 2: k is an interior node of P,
> Ok (u,v) = 0p—1(u, k) + Op—1(k,v)

® SFU X.Qiu ISR

Recursive Formula

Ok (u,v) = min {0—1(u,v), 0g—1(u, k) + dp—1(k,v)}, k=>1

boundary conditions

0, ifu=v
do(u,v) =< c(u,v) if (u,v) € E
o0 otherwise

® SFU X.Qiu

Recursive Formula

Ok (u,v) = min {0—1(u,v), 0g—1(u, k) + dp—1(k,v)}, k=>1

boundary conditions

0, ifu=v
do(u,v) =< c(u,v) if (u,v) € E
o0 otherwise

running time: O(n?)

® SFuU X.Qiu

Floyd-Warshall Algorithm

> input: a graph represented by (weighted) adjacency matrix W

FLOYD-WARSHALL(W)

1 n = W.rows;

2 DO =w; // boundary conditions
3 fork=1tondo

4 let D* = (d(k)) be a new n X n matrix;

5 fori =1 ton do

6 for j =1 ton do

7 L | d) =min{ay ™, dfV +dftY

® SFU X.Qiu GCISEw

Floyd-Warshall Algorithm

> input: a graph represented by (weighted) adjacency matrix W

FLOYD-WARSHALL(W)

1 n = W.rows;

2 DO =w; // boundary conditions
3 fork=1tondo

4 let D* = (d(k)) be a new n X n matrix;

5 fori =1 ton do

6 for j =1 ton do

7 L L d(k) = min {d(k 1) d(k D4 d(k A

> given i,7 € V, how to construct a shortest (i, j)-path?

® SFU X.Qiu GCISEw

given an undirected graph G = (V, E)
> a matching is a set M C E of pairwise non-incident edges

® SFU X.Qiu (ISR

given an undirected graph G = (V, E)
> a matching is a set M C E of pairwise non-incident edges
> perfect matching: |M| = |V|/2

® SFU X.Qiu (ISR

given an undirected graph G = (V, E)
> a matching is a set M C E of pairwise non-incident edges
> perfect matching: |M| = |V|/2
> maximum matching is matching of maximal cardinality

maximal maximum

® SFU X.Qiu (ISR

given an undirected graph G = (V, E)
> a matching is a set M C E of pairwise non-incident edges
> perfect matching: |M| = |V|/2
> maximum matching is matching of maximal cardinality

maximal maximum

Maximum (cardinality) matching

> given: undirected graph G = (V, E)

> goal: compute a maximum matching M

® SFU DOIITRN 6 of 12

> greedy yields maximal matching, but needn’'t be maximum

® SFU X.Qiu ASEw

> greedy yields maximal matching, but needn’'t be maximum

> idea: start with maximal matching, look for augmenting path

® SFU X.Qiu ASEw

> greedy yields maximal matching, but needn’'t be maximum

> idea: start with maximal matching, look for augmenting path

free free

® SFU X.Qiu ASEw

Augmenting Paths

M-alternating path

eM M eM M
O O O O

® SFU DOIITRN 3 of 12

Augmenting Paths

M-alternating path

eM M eM M
O O O O

M-augmenting path

¢ M eEM éM eM ¢ M
free O O O O O O free

® SFU DOIITRN 3 of 12

Augmenting Paths

M-alternating path

eM M eM M
O O O O

M-augmenting path

¢ M eEM éM eM ¢ M
free O O

O free

(@)
(@)
C

eM &M eM ZM EM

® SFU DOIITRN 3 of 12

Augmenting Paths

M-alternating path

eM M eM M
O O O O

M-augmenting path

¢ M eEM éM eM ¢ M
free O O O O O free

eM &M eM ZM EM

O O O O O

Q

o

symmetric difference: MAN = (M\N)U (N\M), M,N C E

® SFU DOIITRN 3 of 12

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

® SFuU X.Qiu CIER

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof
(=) trivial

® SFU X.Qiu CISER

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof
(=) trivial (<) assume IM™ with |[M*| > |M| and consider M AM*

® sFU X.Qiu CIER

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof
(=) trivial (<) assume IM™ with |[M*| > |M| and consider M AM*
> MAM?™ contains node disjoint cycles and paths
c M

M* > e M~ O

O
eM* eM e M*

® sFU X.Qiu CIER

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof
(=) trivial (<) assume IM™ with |[M*| > |M| and consider M AM*
> MAM?™ contains node disjoint cycles and paths
c M

M* > e M~ O

O
eM* eM e M*
eM

> each cycle has even number of edges

® sFU X.Qiu CIER

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof
(=) trivial (<) assume IM™ with |[M*| > |M| and consider M AM*
> MAM?™ contains node disjoint cycles and paths
c M

M* > e M~ O

O
eM* eM e M*
eM

> each cycle has even number of edges

> exist a path P having [PNM*| > |[PN M| by assumption

® SFU X.Qiu CISER

Optimality Condition

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof
(=) trivial (<) assume IM™ with |[M*| > |M| and consider M AM*
> MAM?™ contains node disjoint cycles and paths
c M

M* > e M~ O

O
eM* eM e M*
eM

> each cycle has even number of edges
> exist a path P having [PNM*| > |[PN M| by assumption
> P is an M-augmenting path

® sFU X.Qiu CEIER

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V3, E)

Vi Vs

® SFU DI 10 of 12

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V3, E)

Vi Vs

how to find M-augmenting paths?

® SFuU DO 10 of 12

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V3, E)

Vi Vs

how to find M-augmenting paths?

> bipartite graphs do not have odd cycles (augmenting paths
have odd number of edges)

® SFuU DO 10 of 12

Maximum Matching on Bipartite Graphs

find maximum matching for bipartite graph G = (V1, V3, E)

Vi Vs

how to find M-augmenting paths?

> bipartite graphs do not have odd cycles (augmenting paths
have odd number of edges)

> start with a free node s € V; and search alternating path until
finding another free node t € V5

® SFU DI 10 of 12

Finding Augmenting Paths

1. construct an auxiliary digraph
D = (V,A), with (s,t) € Aif (s,t) & M,
(t,s) € A otherwise

® SFuU DOl 11 of 12

Finding Augmenting Paths

1. construct an auxiliary digraph
D = (V,A), with (s,t) € Aif (s,t) & M,
(t,s) € A otherwise

® SFuU DOl 11 of 12

Finding Augmenting Paths

1. construct an auxiliary digraph
D = (V,A), with (s,t) € Aif (s,t) & M,
(t,s) € A otherwise

2. make BFS from any free node s1 € 1}

()—>C9

QD L—>E)

t—>C2)
C—>C—()

® SFU DOl 11 of 12

Finding Augmenting Paths

1. construct an auxiliary digraph
D = (V,A), with (s,t) € Aif (s,t) & M,
(t,s) € A otherwise

2. make BFS from any free node s1 € 1}

()—>C9

QD L—>E)

t—>C2)
C—>C—()

3. an M-augmenting path is found if exists

® SFU DOl 11 of 12

Augmenting Path Algorithm

BIPARTITE-MATHCING(G)

1 M =0;

2 for all free node s € Vi do

3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P # nil then

6 L M = MAE(P); // augment along P O(m)

® SFuU DI 1D of 12

Augmenting Path Algorithm

BIPARTITE-MATHCING(G)

1 M =0;

2 for all free node s € V1 do

3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P # nil then

6 L M = MAE(P); // augment along P O(m)

> after augmentation: free nodes are matched and matched
nodes are still matched

® SFU DO 1D of 12

Augmenting Path Algorithm

BIPARTITE-MATHCING(G)

1 M =0;

2 for all free node s € V1 do

3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P # nil then

6 L M = MAE(P); // augment along P O(m)

> after augmentation: free nodes are matched and matched
nodes are still matched

> thus no augmenting paths at termination

® SFU DO 1D of 12

Augmenting Path Algorithm

BIPARTITE-MATHCING(G)

1 M =0;

2 for all free node s € V1 do

3 construct the auxiliary digraph D; // O(m)
4 apply BFS(D, s) to find an augmenting path P ; // O(m)
5 if P # nil then

6 L M = MAE(P); // augment along P O(m)

> after augmentation: free nodes are matched and matched
nodes are still matched

> thus no augmenting paths at termination

> running time O(nm)

® SFU DO 1D of 12

	All-pairs Shortest Paths
	Maximum Matching

