CMPT 307: Shortest Paths & Maximum Matchings

Xian Qiu

Simon Fraser University

- \triangleright given: digraph G = (V, E) and cost function $c : E \to \mathbb{R}$
- \triangleright goal: find shortest s-t paths, for all $(s,t) \in V \times V$

- \triangleright given: digraph G = (V, E) and cost function $c: E \to \mathbb{R}$
- \triangleright goal: find shortest s-t paths, for all $(s,t) \in V \times V$
- \triangleright run Bellman-Ford algorithm n times, with running time $O(n^2m)$ ($\Theta(n^4)$ for dense graphs)

- \triangleright given: digraph G = (V, E) and cost function $c: E \to \mathbb{R}$
- \triangleright goal: find shortest s-t paths, for all $(s,t) \in V \times V$
- $\,\vartriangleright\,$ run Bellman-Ford algorithm n times, with running time $O(n^2m)$ ($\Theta(n^4)$ for dense graphs)
- ▷ can we do better?

- \triangleright given: digraph G = (V, E) and cost function $c: E \to \mathbb{R}$
- \triangleright goal: find shortest s-t paths, for all $(s,t) \in V \times V$
- $\,\vartriangleright\,$ run Bellman-Ford algorithm n times, with running time $O(n^2m)$ ($\Theta(n^4)$ for dense graphs)
- ▷ can we do better?

- \triangleright consider a shortest (u, v)-path P_{uv}
- \triangleright with internal nodes $\subseteq V_k := \{1, 2, \dots, k\}$
- $\triangleright \delta_k(u,v) = \text{cost of path } P_{uv}$

$$P_{uv}$$
 $u \sim ? \sim v$

- \triangleright consider a shortest (u, v)-path P_{uv}
- \triangleright with internal nodes $\subseteq V_k := \{1, 2, \dots, k\}$
- $\delta_k(u,v) = \text{cost of path } P_{uv}$

$$P_{uv}$$
 $u \sim ? \sim v$

case 1: k is not an interior node of P_{uv}

case 2: k is an interior node of P_{uv}

- \triangleright consider a shortest (u,v)-path P_{uv}
- \triangleright with internal nodes $\subseteq V_k := \{1, 2, \dots, k\}$

case 1: k is not an interior node of P_{uv}

$$\triangleright \delta_k(u,v) = \delta_{k-1}(u,v)$$

case 2: k is an interior node of P_{uv}

- \triangleright consider a shortest (u, v)-path P_{uv}
- \triangleright with internal nodes $\subseteq V_k := \{1, 2, \dots, k\}$
- $\triangleright \ \delta_k(u,v) = \text{cost of path } P_{uv}$

case 1: k is not an interior node of P_{uv}

$$\delta_k(u,v) = \delta_{k-1}(u,v)$$

case 2: k is an interior node of P_{uv}

$$\delta_k(u,v) = \delta_{k-1}(u,k) + \delta_{k-1}(k,v)$$

Recursive Formula

$$\delta_k(u, v) = \min \{\delta_{k-1}(u, v), \delta_{k-1}(u, k) + \delta_{k-1}(k, v)\}, \quad k \ge 1$$

boundary conditions

$$\delta_0(u,v) = \begin{cases} 0, & \text{if } u = v \\ c(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

Recursive Formula

$$\delta_k(u, v) = \min \{\delta_{k-1}(u, v), \delta_{k-1}(u, k) + \delta_{k-1}(k, v)\}, \quad k \ge 1$$

boundary conditions

$$\delta_0(u,v) = \begin{cases} 0, & \text{if } u = v \\ c(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

running time: $O(n^3)$

Floyd-Warshall Algorithm

 \triangleright input: a graph represented by (weighted) adjacency matrix W

FLOYD-WARSHALL(W)

```
1 n = W.rows:
2 D^{(0)} = W:
                                             boundary conditions
\mathbf{3} for k=1 to n do
     let D^k = (d_{ij}^{(k)}) be a new n \times n matrix;
   for i = 1 to n do
   for j = 1 to n do
```

Floyd-Warshall Algorithm

ight
angle input: a graph represented by (weighted) adjacency matrix W

FLOYD-WARSHALL (W)

```
\begin{array}{lll} 1 & n = W. \mathrm{rows}; \\ 2 & D^{(0)} = W; \\ 3 & \mathbf{for} \ k = 1 \ to \ n \ \mathbf{do} \\ 4 & & | \mathrm{let} \ D^k = (d_{ij}^{(k)}) \ \mathrm{be} \ \mathrm{a} \ \mathrm{new} \ n \times n \ \mathrm{matrix}; \\ 5 & & \mathbf{for} \ i = 1 \ to \ n \ \mathbf{do} \\ 6 & & | \mathbf{for} \ j = 1 \ to \ n \ \mathbf{do} \\ 7 & & | L \ d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)}, \ d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}; \end{array}
```

 \triangleright given $i, j \in V$, how to construct a shortest (i, j)-path?

given an undirected graph G = (V, E)

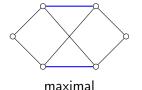
 \triangleright a matching is a set $M \subseteq E$ of pairwise non-incident edges

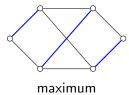
given an undirected graph G = (V, E)

- ightharpoonup a matching is a set $M\subseteq E$ of pairwise non-incident edges
- \triangleright perfect matching: |M| = |V|/2

given an undirected graph G = (V, E)

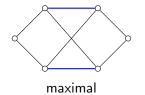
- \triangleright a matching is a set $M \subseteq E$ of pairwise non-incident edges
- \triangleright perfect matching: |M| = |V|/2

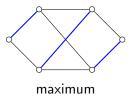




given an undirected graph G = (V, E)

- \triangleright a matching is a set $M \subseteq E$ of pairwise non-incident edges
- \triangleright perfect matching: |M| = |V|/2
- maximum matching is matching of maximal cardinality





Maximum (cardinality) matching

- \triangleright given: undirected graph G = (V, E)
- \triangleright goal: compute a maximum matching M

Basic Idea

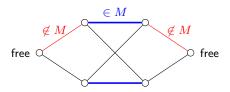
▷ greedy yields maximal matching, but needn't be maximum

Basic Idea

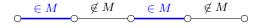
- preedy yields maximal matching, but needn't be maximum

Basic Idea

- preedy yields maximal matching, but needn't be maximum



$M\text{-}\mathrm{alternating}$ path



M-alternating path

$$\in M \qquad \not\in M \qquad \not\in M$$

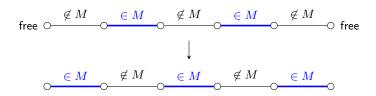
M-augmenting path

$$\text{free} \bigcirc \begin{picture}(20,20) \put(0,0){\line(1,0){100}} \put(0,0){\li$$

M-alternating path

$$\in M \qquad \not\in M \qquad \not\in M$$

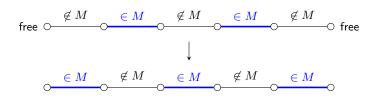
M-augmenting path



M-alternating path

$$\underbrace{\in M} \quad \not\in M \quad \in M \quad \not\in M$$

M-augmenting path



symmetric difference: $M\Delta N=(M\backslash N)\cup(N\backslash M)$, $M,N\subseteq E$

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof

 (\Rightarrow) trivial

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof

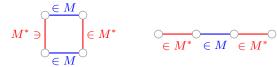
 (\Rightarrow) trivial (\Leftarrow) assume $\exists M^*$ with $|M^*| > |M|$ and consider $M\Delta M^*$

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof

- (\Rightarrow) trivial (\Leftarrow) assume $\exists M^*$ with $|M^*| > |M|$ and consider $M\Delta M^*$
 - $\triangleright M\Delta M^*$ contains node disjoint cycles and paths

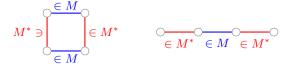


Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof

- (\Rightarrow) trivial (\Leftarrow) assume $\exists M^*$ with $|M^*| > |M|$ and consider $M\Delta M^*$
 - $\triangleright M\Delta M^*$ contains node disjoint cycles and paths



▷ each cycle has even number of edges

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof

- (\Rightarrow) trivial (\Leftarrow) assume $\exists M^*$ with $|M^*| > |M|$ and consider $M\Delta M^*$
 - $\triangleright M\Delta M^*$ contains node disjoint cycles and paths

- ▷ each cycle has even number of edges
- ${\rm \triangleright \ \ exist \ a \ path \ } P \ {\rm having \ } |P \cap M^*| > |P \cap M|$

by assumption

Theorem

Matching M is maximum (cardinality) iff there is no M-augmenting path.

Proof

- (\Rightarrow) trivial (\Leftarrow) assume $\exists M^*$ with $|M^*| > |M|$ and consider $M\Delta M^*$
 - $\triangleright M\Delta M^*$ contains node disjoint cycles and paths

- ▷ each cycle has even number of edges
- ${\scriptstyle \rhd} \ \ {\rm exist \ a \ path \ } P \ {\rm having} \ |P \cap M^*| > |P \cap M|$

by assumption

 $\triangleright \ P$ is an M-augmenting path

find maximum matching for bipartite graph $G = (V_1, V_2, E)$

find maximum matching for bipartite graph $G = (V_1, V_2, E)$

how to find M-augmenting paths?

find maximum matching for bipartite graph $G = (V_1, V_2, E)$

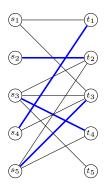
how to find M-augmenting paths?

▷ bipartite graphs do not have odd cycles (augmenting paths have odd number of edges)

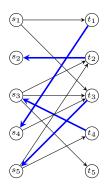
find maximum matching for bipartite graph $G = (V_1, V_2, E)$

how to find M-augmenting paths?

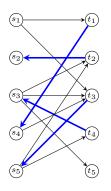
- ▷ bipartite graphs do not have odd cycles (augmenting paths have odd number of edges)
- $\,\vartriangleright\,$ start with a free node $s\in V_1$ and search alternating path until finding another free node $t\in V_2$



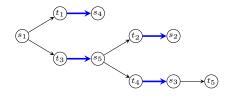
1. construct an auxiliary digraph $D=(V,A)\text{, with }(s,t)\in A\text{ if }(s,t)\not\in M\text{, }\\(t,s)\in A\text{ otherwise}$

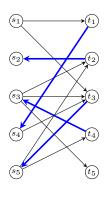


1. construct an auxiliary digraph $D=(V,A)\text{, with }(s,t)\in A\text{ if }(s,t)\not\in M\text{, } \\ (t,s)\in A\text{ otherwise}$

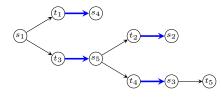


- 1. construct an auxiliary digraph $D=(V,A)\text{, with }(s,t)\in A\text{ if }(s,t)\not\in M\text{, } \\ (t,s)\in A\text{ otherwise}$
- 2. make BFS from any free node $s_1 \in V_1$





- 1. construct an auxiliary digraph $D=(V,A)\text{, with }(s,t)\in A\text{ if }(s,t)\not\in M\text{, } \\ (t,s)\in A\text{ otherwise}$
- 2. make BFS from any free node $s_1 \in V_1$



3. an M-augmenting path is found if exists

BIPARTITE-MATHCING(G)

```
\begin{array}{lll} 1 & M = \emptyset; \\ \mathbf{2} & \textbf{for all free node } s \in V_1 & \textbf{do} \\ \mathbf{3} & & & & & & & & & & & & & \\ \mathbf{3} & & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & \\ \mathbf{5} & & & & & & & & & & & & \\ \mathbf{6} & & & & & & & & & & & & \\ \mathbf{6} & & & & & & & & & & & \\ \mathbf{M} := M\Delta E(P); & & & & & & & & \\ \mathbf{M} := M\Delta E(P); & & & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & \\ \mathbf{M} := \mathbf
```

BIPARTITE-MATHCING(G)

▷ after augmentation: free nodes are matched and matched nodes are still matched

BIPARTITE-MATHCING(G)

```
\begin{array}{lll} 1 & M = \emptyset; \\ \mathbf{2} & \textbf{for} & \textit{all free node } s \in V_1 & \textbf{do} \\ \mathbf{3} & & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & \\ \mathbf{4} & & & & & & & & & & & & \\ \mathbf{5} & & & & & & & & & & & \\ \mathbf{6} & & & & & & & & & & & \\ \mathbf{M} := M\Delta E(P); & & & & & & & & \\ \mathbf{M} := M\Delta E(P); & & & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & \\ \mathbf{M} := \mathbf{M} \Delta E(P); & & \\ \mathbf{M} := \mathbf{M} \Delta E
```

- ▷ after augmentation: free nodes are matched and matched nodes are still matched
- ▷ thus no augmenting paths at termination

BIPARTITE-MATHCING(G)

- after augmentation: free nodes are matched and matched nodes are still matched
- b thus no augmenting paths at termination
 c
- \triangleright running time O(nm)