
CMPT307: SCC & MST
Week 11-2

Xian Qiu

Simon Fraser University

xianq@sfu.ca



Strongly Connected Components

. given directed graph G = (V,E) and C ∈ V

. C is a strongly connected component (SCC) if C is a maximal
set s.t. any pair of vertices are reachable from each other

1 2 3 4

5 6 7 8

. many graph algorithms do the following:

∗ decompose G into strongly connected components
∗ run the algorithm separately for each component
∗ combine the solutions

2 of 19X.QiuSFUU



Transpose Graph

given directed G, the transpose GT of G is the directed graph by
reversing all edges of G

Proposition

GT and G have the same strongly connected components

. assume ∃ u-v path in G, then consider GT

u v

P

G

P ′

. if an u-v path exists in GT , then ∃ v-u path in G

. the cycle formed by P and P ′ is an SCC

3 of 19X.QiuSFUU



Algorithm

. run DFS: get a forest, then consider GT

. run DFS again

1 2 3 4

5 6 7 8

increasing order w.r.t. v.f : 8 4 6 7 3 5 2 1

1 2 3 4

5 6 7 8

run DFS for GT w.r.t. v.f in decreasing order

4 of 19X.QiuSFUU



Component Digraph

1 2 3 4

5 6 7 8

SCC of digraph G

1, 2, 5

3, 4

6, 7 8

component graph GSCC

Lemma. The component digraph of is acyclic.

5 of 19X.QiuSFUU



Component Finishing Lemma

Lemma

Let C and C′ be distinct SCC of digraph G. If there is an edge (u, v) ∈ G with
u ∈ C and v ∈ C′, then f(C) > f(C′).

. define d(C) = minu∈C {u.d} and f(C) = maxu∈C {u.f}

. case 1: d(C) < d(C ′) and let s ∈ C be firstly discovered

s

u v
C C′

∃ white path from s to any v ∈ C ′, hence any v ∈ C ′ is a
descendant of s

6 of 19X.QiuSFUU



Component Finishing Lemma

. case 2: d(C) > d(C ′) and let s ∈ C ′ be firstly discovered

s

u v
C C′

no edge from C ′ to C, hence C ′ finishes before C

Corollary

Let C and C′ be distinct SCC of digraph G. If there is an edge (u, v) ∈ GT ,
with u ∈ C and v ∈ C′, then f(C) < f(C′).

. f(C) > f(C ′), then no (u, v) in GT

7 of 19X.QiuSFUU



Correctness of the Algorithm

start with u of maximum u.f, and get C1 which is an SCC

C1 G1 G1 = G1 − C1

then proceeds to u with maximum u.f in G− C1, and get SCC C2

C1 C2 G2 G2 = G−G1 −G2

already been searched

f(C1) > f(C2)

by corollary, no edges from C1 to C2 in GT , so C1 cannot be
extended (correctness by induction)

8 of 19X.QiuSFUU



Minimum Spanning Trees

The MST problem

. given undirected G = (V,E) and edge costs c : E → R

. find a spanning tree T of G of minimum total cost

. T is a spanning tree of G if T is a
tree with V (T ) = V

. total cost: c(T ) =
∑

e∈T c(e)

a

b c

d

e

f

g

2

1

3

5

4
2

4

1

3
3

3

techniques involved in the MST problem

. greedy algorithm

. data structures: disjoint sets, min-priority queue

. amortized analysis

9 of 19X.QiuSFUU



Coloring Process

Edge-coloring process

. initially, all edges are uncolored

. for all uncolored edges, we color it either blue (accepted) or red (rejected)

. blue edges form MST

Color invariant

There is an MST containing all the blue edges and non of the red edges.

. the set of blue edges can be extended to an MST

. the final set of blue edges is an MST

10 of 19X.QiuSFUU



Cut

. a cut of G = (V,E) is a partition of V into two sets:

(X, X̄), where X̄ = V \X

a

b c

d

e

f
g

. e = (u, v) crosses (X, X̄) if its endpoints are in different parts
of the cut, i.e., u ∈ X and v ∈ X̄

. δ(X): set of edges that cross (X, X̄), i.e.,

δ(X) = {(u, v) ∈ E | u ∈ X, v ∈ V \X}

11 of 19X.QiuSFUU



Coloring Rules

blue rule: best-in

. select a cut (X, X̄) that is not crossed by any blue edge

. color the min cost edge blue among uncolored edges in δ(X)

a

b c

d

e

f

g

2

1

3 2

4

1

3

3

5

4

3

4

3

5

3

5

red rule: worst-out

. select a simple cycle C that does not contain any red edge

. color the max cost edge red among uncolored edges in C

12 of 19X.QiuSFUU



Greedy Algorithm

Generic-MST

apply the two coloring rules arbitrarily until all edges are colored;

Theorem

The above algorithm maintains the color invariant in each step and eventually
colors all edges.

13 of 19X.QiuSFUU



Proof of the Theorem

by induction: assume true for (k − 1)-th iteration and consider k:

blue rule

. assume e ∈ δ(X) is colored blue and e 6∈ MST

. there exists e′ ∈ δ(X), e′ ∈ MST, with c(e′) ≥ c(e)

. replace e′ with e in MST (feasible?)

red rule

. assume e ∈ C is colored red and e ∈ MST

. there exists e′ ∈ C, e′ 6∈ MST, with c(e′) ≤ c(e)

. replace e′ with e in MST (feasible?)

hence, color invariant holds

. at termination, are all edges colored? yes

14 of 19X.QiuSFUU



Kruskal’s Algorithm

MST-Kruskal(G, c)

// initialization and preprocessing

1 A = ∅;
2 for v ∈ G.V do
3 Make-Set(v)

4 sort edges of G into non-decreasing order w.r.t. edge costs;
// greedy

5 for each edge (u, v) from the sorted list do
6 if Find-Set(u) 6= Find-Set(v) then
7 A = A ∪ {(u, v)}; // add (u, v) to A if A ∪ {(u, v)} is acyclic

8 Union(u, v);

9 return A;

15 of 19X.QiuSFUU



Example

a

f

a

f
d

g

d

g

bb cc

ee

11
11

22
2233

33

33

33

44

44

55e1 = (a, f), c(e1) = 1
e2 = (d, g), c(e2) = 1
e3 = (a, b), c(e3) = 2
e4 = (c, d), c(e4) = 2
e5 = (b, f), c(e5) = 3
e6 = (f, g), c(e6) = 3
e7 = (e, f), c(e7) = 3
e8 = (e, g), c(e8) = 3
e9 = (b, g), c(e9) = 4
e10 = (d, e), c(e10) = 4
e11 = (b, c), c(e11) = 5

16 of 19X.QiuSFUU



Running Time

. sorting – O(m logm) = O(m log n)

. m+ n times of disjoint set operations, in which n operations
are Make-Set

. using union by rank and path compression for disjoint set
operations, the running time is O((m+ n)α(n)) = O(mα(n))

. as α(n) = O(log n), the total running time is O(m log n)

17 of 19X.QiuSFUU



Prim’s Algorithm

MST-Prim(G, c)

1 let A be an empty tree;
2 choose an arbitrary node r ∈ G.V as the root of A;
3 for i = 1 to n− 1 do
4 find a min-cost edge ei ∈ δ(V (A));
5 A = A+ {ei};

. use priority queue to extract min-cost edge, yielding running
time O(m log n) (cf. textbook)

. using Fibonacci heap to implement the priority queue can
improve the running time to O(m+ n log n)

18 of 19X.QiuSFUU



Example

gg

dd

cc

ff

aa

bb

ee

11

22

33
11

22

33

3

5

4

43

19 of 19X.QiuSFUU


	SCC
	MST
	Two Greedies

