# CMPT307: SCC & MST

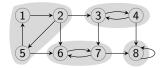
Xian Qiu

Simon Fraser University



# Strongly Connected Components

- $\triangleright$  C is a strongly connected component (SCC) if C is a maximal set s.t. any pair of vertices are reachable from each other



- - \* decompose G into strongly connected components
  - \* run the algorithm separately for each component
  - \* combine the solutions

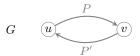
# Transpose Graph

given directed G, the transpose  $G^T$  of G is the directed graph by reversing all edges of G

#### Proposition

 ${\cal G}^T$  and  ${\cal G}$  have the same strongly connected components

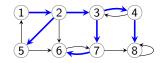
 $\triangleright$  assume  $\exists u - v$  path in G, then consider  $G^T$ 



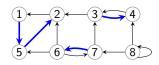
- $\triangleright$  if an u-v path exists in  $G^T$ , then  $\exists v$ -u path in G
- $\triangleright$  the cycle formed by P and P' is an SCC

# Algorithm

- $\triangleright$  run DFS: get a forest, then consider  $G^T$
- ▷ run DFS again

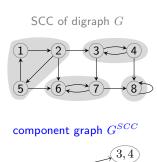


increasing order w.r.t. v.f: 8 4 6 7 3 5 2 1



run DFS for  $G^T$  w.r.t. v.f in decreasing order

# Component Digraph



6, 7

Lemma. The component digraph of is acyclic.

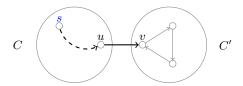
1, 2, 5

# Component Finishing Lemma

#### Lemma

Let C and C' be distinct SCC of digraph G. If there is an edge  $(u,v) \in G$  with  $u \in C$  and  $v \in C'$ , then f(C) > f(C').

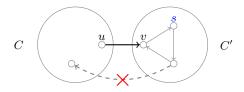
- $\triangleright$  define  $d(C) = \min_{u \in C} \{u.d\}$  and  $f(C) = \max_{u \in C} \{u.f\}$
- $\triangleright$  case 1: d(C) < d(C') and let  $s \in C$  be firstly discovered



 $\exists$  white path from s to any  $v \in C'$ , hence any  $v \in C'$  is a descendant of s

# Component Finishing Lemma

 $\triangleright$  case 2: d(C) > d(C') and let  $s \in C'$  be firstly discovered



no edge from C' to C, hence C' finishes before C

#### Corollary

Let C and C' be distinct SCC of digraph G. If there is an edge  $(u,v) \in G^T$ , with  $u \in C$  and  $v \in C'$ , then f(C) < f(C').

 $\triangleright f(C) > f(C')$ , then no (u, v) in  $G^T$ 

### Correctness of the Algorithm

start with u of maximum u.f, and get  $C_1$  which is an SCC



then proceeds to u with maximum u.f in  $G-C_1$ , and get SCC  $C_2$ 



already been searched

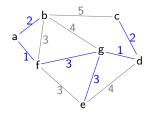
by corollary, no edges from  $C_1$  to  $C_2$  in  $G^T$ , so  $C_1$  cannot be extended (correctness by induction)

# Minimum Spanning Trees

#### The MST problem

- $hd \ \$  given undirected G=(V,E) and edge costs  $c:E o \mathbb{R}$

- $\label{eq:total_total_total} \triangleright \ T \ \mbox{is a spanning tree of} \ G \ \mbox{if} \ T \ \mbox{is a}$  tree with V(T) = V
- $\triangleright$  total cost:  $c(T) = \sum_{e \in T} c(e)$



#### techniques involved in the MST problem

- ▷ data structures: disjoint sets, min-priority queue

## Coloring Process

#### Edge-coloring process

- ▷ initially, all edges are uncolored
- blue edges form MST

#### Color invariant

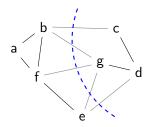
There is an MST containing all the blue edges and non of the red edges.

- b the set of blue edges can be extended to an MST
- b the final set of blue edges is an MST

#### Cut

 $\triangleright$  a cut of G=(V,E) is a partition of V into two sets:

$$(X, \bar{X})$$
, where  $\bar{X} = V \backslash X$ 



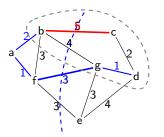
- $\triangleright \ e=(u,v) \ {\rm crosses} \ (X,\bar{X}) \ {\rm if \ its \ endpoints \ are \ in \ different \ parts }$  of the cut, i.e.,  $u\in X$  and  $v\in \bar{X}$
- $\,\,\, \triangleright \,\, \delta(X) \colon \operatorname{set} \,\, \operatorname{of} \,\, \operatorname{edges} \,\, \operatorname{that} \,\, \operatorname{cross} \,\, (X,\bar{X}) \text{, i.e.,}$

$$\delta(X) = \{(u, v) \in E \mid u \in X, v \in V \setminus X\}$$

### Coloring Rules

#### blue rule: best-in

- $\triangleright$  select a cut  $(X, \bar{X})$  that is not crossed by any blue edge
- $\triangleright$  color the min cost edge blue among uncolored edges in  $\delta(X)$



#### red rule: worst-out

- $\triangleright$  select a simple cycle C that does not contain any red edge
- $\triangleright$  color the max cost edge red among uncolored edges in C

# Greedy Algorithm

#### Generic-MST

apply the two coloring rules arbitrarily until all edges are colored;

#### Theorem

The above algorithm maintains the color invariant in each step and eventually colors all edges.

### Proof of the Theorem

by induction: assume true for (k-1)-th iteration and consider k:

#### blue rule

- $hd \$ assume  $e \in \delta(X)$  is colored blue and  $e \notin \mathsf{MST}$
- $\triangleright$  there exists  $e' \in \delta(X)$ ,  $e' \in \mathsf{MST}$ , with  $c(e') \ge c(e)$
- $\triangleright$  replace e' with e in MST (feasible?)

#### red rule

- $hd \ \$  assume  $e \in C$  is colored red and  $e \in \mathsf{MST}$
- $\triangleright$  there exists  $e' \in C$ ,  $e' \notin \mathsf{MST}$ , with  $c(e') \le c(e)$
- $\triangleright$  replace e' with e in MST (feasible?)

#### hence, color invariant holds

▷ at termination, are all edges colored?

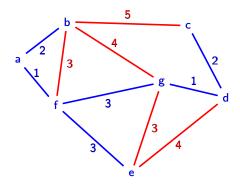
ves

# Kruskal's Algorithm

#### $\mathsf{MST} ext{-}\mathsf{Kruskal}(G,c)$

### Example

$$e_1 = (a, f), c(e_1) = 1$$
  
 $e_2 = (d, g), c(e_2) = 1$   
 $e_3 = (a, b), c(e_3) = 2$   
 $e_4 = (c, d), c(e_4) = 2$   
 $e_5 = (b, f), c(e_5) = 3$   
 $e_6 = (f, g), c(e_6) = 3$   
 $e_7 = (e, f), c(e_7) = 3$   
 $e_8 = (e, g), c(e_8) = 3$   
 $e_9 = (b, g), c(e_9) = 4$   
 $e_{10} = (d, e), c(e_{10}) = 4$   
 $e_{11} = (b, c), c(e_{11}) = 5$ 



# Running Time

- $\triangleright$  sorting  $O(m \log m) = O(m \log n)$
- ho m+n times of disjoint set operations, in which n operations are MAKE-SET
- $\triangleright$  using union by rank and path compression for disjoint set operations, the running time is  $O((m+n)\alpha(n)) = O(m\alpha(n))$
- $\triangleright$  as  $\alpha(n) = O(\log n)$ , the total running time is  $O(m \log n)$

## Prim's Algorithm

#### $\mathsf{MST}\text{-}\mathsf{Prim}(G,c)$

```
\begin{array}{ll} \text{1 let $A$ be an empty tree;} \\ \text{2 choose an arbitrary node $r \in G.V$ as the root of $A$;} \\ \text{3 for $i=1$ to $n-1$ do} \\ \text{4 } & \text{find a min-cost edge $e_i \in \delta(V(A))$;} \\ \text{5 } & A=A+\{e_i\}; \end{array}
```

- $\triangleright$  use priority queue to extract min-cost edge, yielding running time  $O(m \log n)$  (cf. textbook)
- $\triangleright$  using Fibonacci heap to implement the priority queue can improve the running time to  $O(m+n\log n)$

# Example

