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Strongly Connected Components

> given directed graph G = (V,E) and C € V

> C'is a strongly connected component (SCC) if C' is a maximal
set s.t. any pair of vertices are reachable from each other

> many graph algorithms do the following:

+ decompose G into strongly connected components
+ run the algorithm separately for each component
* combine the solutions
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Transpose Graph

given directed G, the transpose G of G is the directed graph by
reversing all edges of G

Proposition

GT and G have the same strongly connected components

> assume 3 u-v path in G, then consider GT
¢ @ W
P/

> if an u-v path exists in GT, then 3 v-u path in G
> the cycle formed by P and P’ is an SCC
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Algorithm

> run DFS: get a forest, then consider GT
> run DFS again

(L—2—(3—=4)
5 —6=7—6D

increasing order w.r.t. v.f: 8 4 6 7 3 5 2 1

?@
run DFS for GT w.r.t. v.f in decreasing order
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Component Digraph

SCC of digraph G

component graph G°¢¢

E

&0 ®

Lemma. The component digraph of is acyclic.
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Component Finishing Lemma

Lemma

Let C and C’ be distinct SCC of digraph G. If there is an edge (u,v) € G with
u € Candv e, then f(C) > f(C").

> define d(C) = minyec {u.d} and f(C) = maxyec {u.f}
> case 1: d(C) < d(C") and let s € C be firstly discovered

3 white path from s to any v € C’, hence any v € (" is a
descendant of s
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Component Finishing Lemma

> case 2: d(C) > d(C") and let s € C’ be firstly discovered

- _><_ -
no edge from C’ to C, hence C’ finishes before C

Corollary

Let C and C” be distinct SCC of digraph G. If there is an edge (u,v) € G7,
with u € C and v € C’, then f(C) < f(C’).

> f(C) > f(C"), then no (u,v) in GT
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Correctness of the Algorithm

start with v of maximum w.f, and get C which is an SCC

G =G —C

then proceeds to u with maximum wu.f in G — C4, and get SCC Cy

F(Cr) > f(C2)
e-@-e Go =G — Gy — G

already been searched

by corollary, no edges from C to Cs in GT, so C; cannot be
extended (correctness by induction)
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Minimum Spanning Trees

The MST problem

> given undirected G = (V, F) and edge costs c: F — R

> find a spanning tree T of G of minimum total cost

}/b#c
> T is a spanning tree of G if T is a a}\ /3X \<
g1

tree with V(T') =V

f/ T
> total cost: ¢(T') = Y pcle) \\ %/

techniques involved in the MST problem

(e}

> greedy algorithm
> data structures: disjoint sets, min-priority queue

> amortized analysis
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Coloring Process

Edge-coloring process

> initially, all edges are uncolored
> for all uncolored edges, we color it either blue (accepted) or red (rejected)
> blue edges form MST

Color invariant

There is an MST containing all the blue edges and non of the red edges.

> the set of blue edges can be extended to an MST
> the final set of blue edges is an MST
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Cut

> a cut of G = (V, E) is a partition of V' into two sets:
(X, X), where X = V\X

> e = (u,v) crosses (X, X) if its endpoints are in different parts
of the cut, ie, ue X andv e X

> 6(X): set of edges that cross (X, X), i.e.,
0(X)={(u,v) e E|ue X,veV\X}
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Coloring Rules

blue rule: best-in
> select a cut (X, X) that is not crossed by any blue edge
> color the min cost edge blue among uncolored edges in §(X)

red rule: worst-out
> select a simple cycle C that does not contain any red edge
> color the max cost edge red among uncolored edges in C
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Greedy Algorithm

Generic-MST

apply the two coloring rules arbitrarily until all edges are colored;

Theorem

The above algorithm maintains the color invariant in each step and eventually
colors all edges.
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Proof of the Theorem

by induction: assume true for (k — 1)-th iteration and consider k:
blue rule

> assume e € §(X) is colored blue and e ¢ MST

> there exists €/ € 6(X), ¢/ € MST, with ¢(e’) > ¢(e)

> replace €’ with e in MST (feasible?)

red rule
> assume e € C'is colored red and e € MST
> there exists € € C, € ¢ MST, with ¢(¢’) < c(e)
> replace €’ with e in MST (feasible?)

hence, color invariant holds
> at termination, are all edges colored? yes
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Kruskal's Algorithm

MST-Kruskal(G, ¢)

// initialization and preprocessing
A=0;

2 for v € G.V do

3 | MAKE-SET(v)

-

4 sort edges of GG into non-decreasing order w.r.t. edge costs;
// greedy
5 for each edge (u,v) from the sorted list do
6 if FIND-SET(u) # FIND-SET(v) then
7 A=AU{(u,v)}; // add (u,v) to A if AU{(u,v)} is acyclic
8 L UNION(u, v);

9 return A;
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> sorting — O(mlogm) = O(mlogn)

> m + n times of disjoint set operations, in which n operations
are MAKE-SET

> using union by rank and path compression for disjoint set
operations, the running time is O((m + n)a(n)) = O(ma(n))
> as a(n) = O(logn), the total running time is O(mlogn)
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Prim’s Algorithm

MST-Prim(G, ¢)

let A be an empty tree;
choose an arbitrary node r € G.V as the root of A;
fori=1ton—1do
find a min-cost edge e; € 6(V(A));
L A=A+{e};

Qg oA W N =

> use priority queue to extract min-cost edge, yielding running
time O(mlogn) (cf. textbook)

> using Fibonacci heap to implement the priority queue can
improve the running time to O(m + nlogn)
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