CMPT307: Depth-First-Search

Week 11-1

Xian Qiu

Simon Fraser University

Depth-First-Search

> BFS yields (unweighted) shortest path tree
shortest distances
+ searching paths

> DFS has applications in

+ topological sort
+ strongly connected components

> information saved in DFS

+ discovering times and finishing times
+ colors
+ searching paths

® sru X.Qiu

Discovering /Finishing Time

> d[u]: discovering time of u
> f[u]: finishing time of searching u's neighbors

Cflul=t+5
dlw]=t+3
flw] =t +4
tiriendt + 8
Parenthesis properties
> dlu] < flu]
> [d[u], f[u]] entirely contains [d[v], f[v]] v is a descendant of u

> [d[v], f[v]] and [d]w], flw]] are disjoint

® sru X.Qiu

Colors

coloring of vertices:
> white: undiscovered
> gray: discovered, but not yet scanned all of its neighbors

> black: discovered and all adjacent vertices have been scanned

Observations

> w is colored white before d[u]
> w is colored gray between d[u] and f[u]

> wu is colored black after f[u]

® sFU X.Qiu

Depth-First Search

DFS(G,u)

// initialization
1 for u € V do
2 u.color = WHITE;
L u.p = nil;
4 time = 0;

// apply DFS to all connected components
5 for u € V do
6 if u.color = WHITE then

L | DFS-VisiT(G, u);

> DFS output a depth-first forest

® sru X.Qiu

Depth-First Search

DFS-VIsIT(G, u)

time = time +1;
u.d = time; // discovering time
u.color = GRAY;
for each v that is adjacent to u do
if v.color == WHITE then
v.p =u; // record searching path
L DFS-VisiT(G, v);

N o g A W N =

8 wu.color = BLACK;
9 time = time + 1;
10 u.f = time; // finishing time

® sru X.Qiu

T Y z

discovering time/finishing time

what if start from w?

® sru X.Qiu

White-Path Theorem

Theorem

In a depth-first forest of G, v is a descendant of w iff there is a path from u to
v consisting entirely of white vertices at time u.d.

O—0O0—0—®

> (=) w is discovered before its descendants, at time u.d
(before coloring it gray), u is white, so are the descendants

> (<) u.d < v.d < v.f < u.fand by parenthesis properties

® SFU X.Qiu

Edge Classification

> tree edge: edges of DFS forest

> forward edge: tree ancestor to tree descendant

> back edge: tree descendant to tree ancestor

> cross edge: either vertex is not an ancestor of another, or
edges between two trees

@)
2] 8
-

DFS for directed graph

® sru X.Qiu

DFS in Edge Classification

when exploring an edge (u,v), examine the color of v:
> WuITk indicates a tree edge
> Gray indicates a back edge
> Brack indicates a forward or cross edge

Theorem

In a DFS of undirected (7, every edge is either a tree edge or a back edge.

® sru X.Qiu

Directed Acyclic Graphs

Definition
A directed graph G = (V, E) has a linearization if there is a bijection
m:V = {1,...,|V]} such that w(u) < w(v), V(u,v) € E.

all arcs from left to right

® sru X.Qiu

Directed Acyclic Graphs

Theorem

A digraph G = (V, E) has a linearization iff it has no directed cycle.

Proof
(=) a cycle (u,v,...,u) yields 7(u) < 7(v) < ... < m(u)
(«=) acyclic graphs have a node without incoming arcs
> assume u € V has no incoming arcs and let m(u) =1
> delete all arcs (u,v) € E and consider G — u (which is acyclic)

> by induction on G — u, we get a linearization

topological sort: find a linearization of a DAG
> from the proof
> apply DFS

® sru X.Qiu

Topological Sort by DFS

> G=(V,E)isaDAGandv eV
> call DFS(G) to compute finishing time v. f for each v
> as each v is finished, insert it onto the front of a linked list

O
QQAG
E—06 @

L—{1] 3—{2] 3{5] FHA3[J—4[F—{7[F—6]\]

® sru X.Qiu

Correctness

> no back edges in each tree

. &\ . B .
S o _

> no “backward” edges in between trees

® sru X.Qiu

	Outline
	Depth-First Search
	Topological Sort

