
CMPT307: Depth-First-Search
Week 11-1

Xian Qiu

Simon Fraser University

xianq@sfu.ca



Depth-First-Search

. BFS yields (unweighted) shortest path tree

∗ shortest distances
∗ searching paths

. DFS has applications in

∗ topological sort
∗ strongly connected components

. information saved in DFS

∗ discovering times and finishing times
∗ colors
∗ searching paths

2 of 14X.QiuSFUU



Discovering/Finishing Time

. d[u]: discovering time of u

. f [u]: finishing time of searching u’s neighbors

u

v w

time: t

d[u] = t

time: t+ 1

d[v] = t+ 1

time: t+ 2

f [v] = t+ 2

time: t+ 3

d[w] = t+ 3

time: t+ 4

f [w] = t+ 4

time: t+ 5

f [u] = t+ 5

Parenthesis properties

. d[u] < f [u]

. [d[u], f [u]] entirely contains [d[v], f [v]] v is a descendant of u

. [d[v], f [v]] and [d[w], f [w]] are disjoint

3 of 14X.QiuSFUU



Colors

coloring of vertices:

. white: undiscovered

. gray: discovered, but not yet scanned all of its neighbors

. black: discovered and all adjacent vertices have been scanned

Observations

. u is colored white before d[u]

. u is colored gray between d[u] and f [u]

. u is colored black after f [u]

4 of 14X.QiuSFUU



Depth-First Search

DFS(G, u)

// initialization

1 for u ∈ V do
2 u.color = White;
3 u.p = nil;

4 time = 0;
// apply DFS to all connected components

5 for u ∈ V do
6 if u.color = White then
7 DFS-Visit(G, u);

. DFS output a depth-first forest

5 of 14X.QiuSFUU



Depth-First Search

DFS-Visit(G, u)

1 time = time +1;
2 u.d = time; // discovering time

3 u.color = gray;
4 for each v that is adjacent to u do
5 if v.color == White then
6 v.p = u; // record searching path

7 DFS-Visit(G, v);

8 u.color = Black;
9 time = time + 1;

10 u.f = time; // finishing time

6 of 14X.QiuSFUU



Example

u v w

x y z

1/ 2/

3/4/4/5 3/6

2/71/8 9/

10/10/11

9/12

discovering time/finishing time

what if start from w?

7 of 14X.QiuSFUU



White-Path Theorem

Theorem

In a depth-first forest of G, v is a descendant of u iff there is a path from u to
v consisting entirely of white vertices at time u.d.

u v

. (⇒) u is discovered before its descendants, at time u.d
(before coloring it gray), u is white, so are the descendants

. (⇐) u.d < v.d < v.f < u.f and by parenthesis properties

8 of 14X.QiuSFUU



Edge Classification

. tree edge: edges of DFS forest

. forward edge: tree ancestor to tree descendant

. back edge: tree descendant to tree ancestor

. cross edge: either vertex is not an ancestor of another, or
edges between two trees

1

2

3 4

5

6

7 8

DFS for directed graph

9 of 14X.QiuSFUU



DFS in Edge Classification

when exploring an edge (u, v), examine the color of v:

. White indicates a tree edge

. Gray indicates a back edge

. Black indicates a forward or cross edge

Theorem

In a DFS of undirected G, every edge is either a tree edge or a back edge.

1

2

3 4

5

6

7 8

1

2

3 4

5

6

7 8

10 of 14X.QiuSFUU



Directed Acyclic Graphs

Definition

A directed graph G = (V,E) has a linearization if there is a bijection
π : V → {1, . . . , |V |} such that π(u) < π(v), ∀(u, v) ∈ E.

1 2 3 4 5

all arcs from left to right

11 of 14X.QiuSFUU



Directed Acyclic Graphs

Theorem

A digraph G = (V,E) has a linearization iff it has no directed cycle.

Proof

(⇒) a cycle (u, v, . . . , u) yields π(u) < π(v) < . . . < π(u)

(⇐) acyclic graphs have a node without incoming arcs

. assume u ∈ V has no incoming arcs and let π(u) = 1

. delete all arcs (u, v) ∈ E and consider G− u (which is acyclic)

. by induction on G− u, we get a linearization

topological sort: find a linearization of a DAG

. from the proof

. apply DFS

12 of 14X.QiuSFUU



Topological Sort by DFS

. G = (V,E) is a DAG and v ∈ V

. call DFS(G) to compute finishing time v.f for each v

. as each v is finished, insert it onto the front of a linked list

1

2 3 4

5 6 7

L 1 2 5 3 4 7 6 \

13 of 14X.QiuSFUU



Correctness

. no back edges in each tree

1 2 3 4

. no “backward” edges in between trees

1 2 3 4 5 6

1 3 4 5 2 6

14 of 14X.QiuSFUU


	Outline
	Depth-First Search
	Topological Sort

