CMPT307: Depth-First-Search

Xian Qiu

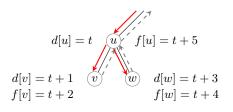
Simon Fraser University

Depth-First-Search

- ▷ BFS yields (unweighted) shortest path tree
 - * shortest distances
 - * searching paths
- ▷ DFS has applications in
 - * topological sort
 - * strongly connected components
- - * discovering times and finishing times
 - * colors
 - * searching paths

Discovering/Finishing Time

- $\triangleright d[u]$: discovering time of u
- $\triangleright f[u]$: finishing time of searching u's neighbors



timenet + 3

Parenthesis properties

- $\triangleright d[u] < f[u]$
- \triangleright [d[u], f[u]] entirely contains [d[v], f[v]]
- $\triangleright [d[v], f[v]]$ and [d[w], f[w]] are disjoint

v is a descendant of u

Colors

coloring of vertices:

- ▷ black: discovered and all adjacent vertices have been scanned

Observations

- $\triangleright \ u$ is colored white before d[u]
- $\, \, \triangleright \, \, u$ is colored black after f[u]

Depth-First Search

DFS(G, u)

```
\label{eq:continuity} \begin{array}{ll} \mbox{// initialization} \\ \mbox{1} & \mbox{for } u \in V \mbox{ do} \\ \mbox{2} & \mbox{$u$.color} = \mbox{WHITE;} \\ \mbox{3} & \mbox{$u$.p} = \mbox{nil;} \\ \mbox{4} & \mbox{time} = 0; \\ \mbox{// apply DFS to all connected components} \\ \mbox{5} & \mbox{for } u \in V \mbox{ do} \\ \mbox{6} & \mbox{if } u.color = \mbox{WHITE then} \\ \mbox{7} & \mbox{$DFS-VISIT(G,u)$;} \end{array}
```

▷ DFS output a depth-first forest

Depth-First Search

DFS-VISIT(G, u)

```
1 time = time +1;

2 u.d = time;  // discovering time

3 u.color = GRAY;

4 for each v that is adjacent to u do

5 if v.color == WHITE then

6 v.p = u;  // record searching path

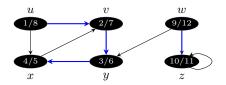
7 DFS-VISIT(G, v);

8 u.color = BLACK;

9 time = time + 1;

10 u.f = time;  // finishing time
```

Example



discovering time/finishing time

what if start from w?

White-Path Theorem

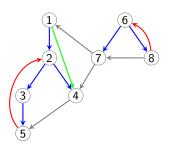
Theorem

In a depth-first forest of G, v is a descendant of u iff there is a path from u to v consisting entirely of white vertices at time u.d.

- \triangleright (\Rightarrow) u is discovered before its descendants, at time u.d (before coloring it gray), u is white, so are the descendants
- \triangleright (\Leftarrow) u.d < v.d < v.f < u.f and by parenthesis properties

Edge Classification

- back edge: tree descendant to tree ancestor



DFS for directed graph

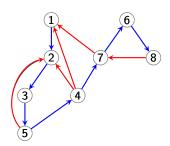
DFS in Edge Classification

when exploring an edge (u, v), examine the color of v:

- ▷ White indicates a tree edge
- ▷ GRAY indicates a back edge
- ▷ Black indicates a forward or cross edge

Theorem

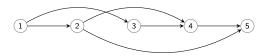
In a DFS of undirected G, every edge is either a tree edge or a back edge.



Directed Acyclic Graphs

Definition

A directed graph G=(V,E) has a linearization if there is a bijection $\pi:V\to\{1,\ldots,|V|\}$ such that $\pi(u)<\pi(v),\,\forall(u,v)\in E.$



all arcs from left to right

Directed Acyclic Graphs

Theorem

A digraph G = (V, E) has a linearization iff it has no directed cycle.

Proof

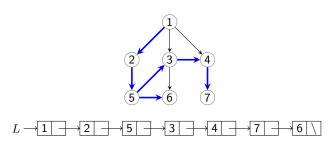
- (\Rightarrow) a cycle (u, v, \dots, u) yields $\pi(u) < \pi(v) < \dots < \pi(u)$
- (⇐) acyclic graphs have a node without incoming arcs
 - \triangleright assume $u \in V$ has no incoming arcs and let $\pi(u) = 1$
 - \triangleright delete all arcs $(u, v) \in E$ and consider G u (which is acyclic)
 - \triangleright by induction on G-u, we get a linearization

topological sort: find a linearization of a DAG

- ▷ apply DFS

Topological Sort by DFS

- $\, \triangleright \, \, G = (V,E) \, \, \text{is a DAG and} \, \, v \in V$
- $hd \ \operatorname{call}\ \operatorname{DFS}(G)$ to compute finishing time v.f for each v
- \triangleright as each v is finished, insert it onto the front of a linked list



Correctness

▷ no back edges in each tree

▷ no "backward" edges in between trees

