CMPT307: Disjoint Sets

Week 10-1

Xian Qiu

Simon Fraser University

Outline

- b dynamic tables
 b dynamic tables
 c dynamic tables
 (another example on amortized analysis)

Dynamic Tables

- \triangleright to allocate space for a table T using consecutive memories
- $\,\,
 hd$ number of items to be stored in T is dynamic
- $\, \triangleright \, \operatorname{load \, factor} \, \alpha(T) = \tfrac{T.\operatorname{num}}{T.\operatorname{size}}$

if T is full, i.e. $\alpha(T) = 1$ (or close to one), we expand it:

- \triangleright allocate a larger table T'
- \triangleright copy T to T' and free T

if $\alpha(T)$ is small, we contract it analogously

Table Expansion

Table-Insert(T, x)

worst-case running time O(n)

Aggregate Analysis

$$c_i = \text{cost of the } i \text{th Table-Insert} = ?$$

$$c_i = \begin{cases} i, & \text{if } i-1 \text{ is an exact power of 2} \\ 1, & \text{otherwise} \end{cases}$$

$$\sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j < n + 2n = 3n \quad \Rightarrow \hat{c}_i = 3 = O(1)$$

Accounting Method

charge 3 dollars for each insertion

- by direct insertion of an element costs 1 dollar
- 1 credit for moving itself to new table
- ▷ 1 credit for moving another item that has already been moved. once when the table expands

Potential Method

$$\Phi(T) = 2 \cdot T.\mathsf{num} - T.\mathsf{size} \\ \hspace*{0.2in} \in \{0, 1, \dots, T.\mathsf{num}\}$$

if the ith Table-Insert does not trigger an expansion

$$\begin{split} \hat{c}_i &= c_i + \Phi_i - \Phi_{i-1} \\ &= 1 + \left(2 \cdot \mathsf{num}_i - \mathsf{size}_i\right) - \left(2 \cdot \mathsf{num}_{i-1} - \mathsf{size}_{i-1}\right) \\ &= 1 + \left(2 \cdot \mathsf{num}_i - \mathsf{size}_i\right) - \left[2(\mathsf{num}_i - 1) - \mathsf{size}_i\right] = 3 \end{split}$$

else, size_i = $2 \cdot \text{size}_{i-1}$ and size_{i-1} = num_{i-1} = $\text{num}_i - 1$

$$\begin{split} \hat{c}_i &= \mathsf{num}_i + (2 \cdot \mathsf{num}_i - \mathsf{size}_i) - (2 \cdot \mathsf{num}_{i-1} - \mathsf{size}_{i-1}) \\ &= 1 - \mathsf{size}_{i-1} + (2 \cdot \mathsf{num}_i - 2 \cdot \mathsf{size}_{i-1}) - [2(\mathsf{num}_i - 1) - \mathsf{size}_{i-1}] \\ &= 3 \end{split}$$

Table Expansion and Contraction

Table-Delete: halve the table size when $\alpha(T) < \frac{1}{4}$ why not $\frac{1}{2}$?

consider a sequence of n Table-Insert, Table-Delete operations intuition: $\hat{c}_i = O(1)$ for insertion and deletion, so is their mixture potential method

$$\Phi(T) = \begin{cases} 2 \cdot T.\mathsf{num} - T.\mathsf{size}, & \text{if } \alpha(T) \geq \frac{1}{2} \\ \frac{1}{2} \cdot T.\mathsf{size} - T.\mathsf{num}, & \text{if } \alpha(T) < \frac{1}{2} \end{cases}$$
$$\geq 0?$$

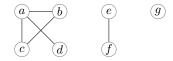
Disjoint Set Operations

to maintain a collection of disjoint dynamic sets

- \triangleright Make-Set(x) creates a new set $\{x\}$
- riangleright Union(x,y) unites the dynamic sets that contain x,y
- ightharpoonup FIND-SET(x) returns a pointer to the representative of the (unique) set containing x

straightforward idea: linked-list representation for dynamic set applications: connected components, minimum spanning trees etc.

Connected Components



Connected-Components (G)

```
1 for v \in V(G) do

2 \bigsqcup Make-Set(v);

3 for each edge (u,v) \in E(G) do

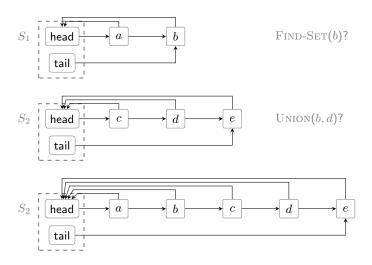
4 \bigsqcup if Find-Set(u) \neq Find-Set(v) then

5 \bigsqcup Union(u,v);
```

running time

- $\triangleright n$ times of Make-Set
- $\triangleright \ O(m)$ times of Union, Find-Set

Linked-list Representation



Analysis

- \triangleright given n objects x_1, \ldots, x_n
- \triangleright execute n times ${ t Make-Set}$, followed by n-1 times ${ t Union}$
- ho # operations m=2n-1, in which n operations are Make-Set
- ▷ average running time for each operation?

operation	# objects updated
Make-Set (x_1)	1
• • •	• • •
Make-Set (x_n)	1
Union (x_2, x_1)	1
Union (x_3, x_2)	2
Union (x_n, x_{n-1})	n-1

- \triangleright total running time $= n + \sum_{i=1}^{n-1} i = \Theta(n^2)$
- \triangleright amortize running time per operation is $\Theta(n)$

Weight-union Heuristic

- ▷ always update the shorter list for Union
- > set a length attribute of each set and maintain it
- \triangleright consider m operations (Make-Set, Union, Find-Set), in which n operations are Make-Set

Theorem

The total running time of the m operations is $O(m + n \log n)$.

- \triangleright each operation costs $O(\log n)$
- $ho \ O(m)$ times Make-Set, Find-Set take O(m)
- ho at most n-1 Union operations, the time for updating length is O(n)
- \triangleright to show: at most $O(\log n)$ updates for each element

Proof of the Theorem

