
CMPT307: Disjoint Sets
Week 10-1

Xian Qiu

Simon Fraser University

xianq@sfu.ca

Outline

. dynamic tables
(another example on amortized analysis)

. disjoint sets

2 of 14X.QiuSFUU

Dynamic Tables

. to allocate space for a table T using consecutive memories

. number of items to be stored in T is dynamic

. load factor α(T) = T.num
T.size

if T is full, i.e. α(T) = 1 (or close to one), we expand it:

. allocate a larger table T ′

. copy T to T ′ and free T

if α(T) is small, we contract it analogously

3 of 14X.QiuSFUU

Table Expansion

Table-Insert(T, x)

1 if T.size == 0 then
2 allocate T.table with 1 slot;
3 T.size = 1;

4 if T.num == T.size then
5 allocate new-table with 2 · T.size slots;
6 insert all items in T.table into new-table;
7 free T.table;
8 T.table = new-table;
9 T.size = 2 · T.size;

10 insert x into T.table;
11 T.num = T.num+ 1;

worst-case running time O(n)

4 of 14X.QiuSFUU

Aggregate Analysis

ci = cost of the ith Table-Insert = ?

ci =

{
i, if i− 1 is an exact power of 2

1, otherwise

n∑
i=1

ci ≤ n+

blognc∑
j=0

2j < n+ 2n = 3n ⇒ ĉi = 3 = O(1)

5 of 14X.QiuSFUU

Accounting Method

charge 3 dollars for each insertion

. direct insertion of an element costs 1 dollar

. 1 credit for moving itself to new table

. 1 credit for moving another item that has already been moved
once when the table expands

0

x1

0

x2

2

x3

2

x4

0

x1

0

x2

0

x3

0

x4

6 of 14X.QiuSFUU

Potential Method

Φ(T) = 2 · T.num− T.size ∈ {0, 1, . . . , T.num}

if the ith Table-Insert does not trigger an expansion

ĉi = ci + Φi − Φi−1

= 1 + (2 · numi − sizei)− (2 · numi−1 − sizei−1)

= 1 + (2 · numi − sizei)− [2(numi − 1)− sizei] = 3

else, sizei = 2 · sizei−1 and sizei−1 = numi−1 = numi − 1

ĉi = numi + (2 · numi − sizei)− (2 · numi−1 − sizei−1)

= 1− sizei−1 + (2 · numi − 2 · sizei−1)− [2(numi − 1)− sizei−1]

= 3

7 of 14X.QiuSFUU

Table Expansion and Contraction

Table-Delete: halve the table size when α(T) < 1
4 why not 1

2?

consider a sequence of n Table-Insert, Table-Delete operations

intuition: ĉi = O(1) for insertion and deletion, so is their mixture

potential method

Φ(T) =

{
2 · T.num− T.size, if α(T) ≥ 1

2
1
2 · T.size− T.num, if α(T) < 1

2

≥ 0?

8 of 14X.QiuSFUU

Disjoint Set Operations

to maintain a collection of disjoint dynamic sets

. Make-Set(x) creates a new set {x}

. Union(x, y) unites the dynamic sets that contain x, y

. Find-Set(x) returns a pointer to the representative of the
(unique) set containing x

straightforward idea: linked-list representation for dynamic set

applications: connected components, minimum spanning trees etc.

9 of 14X.QiuSFUU

Connected Components

a b

c d

e

f

g

Connected-Components(G)

1 for v ∈ V (G) do
2 Make-Set(v);

3 for each edge (u, v) ∈ E(G) do
4 if Find-Set(u) 6= Find-Set(v) then
5 Union(u, v);

running time

. n times of Make-Set

. O(m) times of Union, Find-Set

10 of 14X.QiuSFUU

Linked-list Representation

head

tail

a bS1 Find-Set(b)?

head

tail

c d eS2 Union(b, d)?

head

tail

a b c d eS2

11 of 14X.QiuSFUU

Analysis

. given n objects x1, . . . , xn

. execute n times Make-Set , followed by n− 1 times Union

. # operations m = 2n− 1, in which n operations are Make-Set

. average running time for each operation?

operation # objects updated

Make-Set(x1) 1
· · · · · ·

Make-Set(xn) 1
Union(x2, x1) 1
Union(x3, x2) 2
· · · · · ·

Union(xn, xn−1) n− 1

. total running time = n+
∑n−1

i=1 i = Θ(n2)

. amortize running time per operation is Θ(n)

12 of 14X.QiuSFUU

Weight-union Heuristic

. always update the shorter list for Union

. set a length attribute of each set and maintain it

. consider m operations (Make-Set, Union, Find-Set), in which
n operations are Make-Set

Theorem

The total running time of the m operations is O(m+ n logn).

. each operation costs O(log n)

. O(m) times Make-Set, Find-Set take O(m)

. at most n− 1 Union operations, the time for updating length
is O(n)

. to show: at most O(log n) updates for each element

13 of 14X.QiuSFUU

Proof of the Theorem

Sk

Sk−1 Tk−1

S2 T2

x ∈ S1 T1

|Ti| ≥ |Si|, 1 ≤ i ≤ k − 1

|S1| = d

|S2| ≥ 2d

|Sk−1| ≥ 2k−1d

n ≥ |Sk| ≥ 2kd

k ≤ log n
d ≤ log n

14 of 14X.QiuSFUU

	Outline
	Dynamic Tables
	Disjoint Set Operations
	Linked-list Representation

