CMPT307: Disjoint Sets

Week 10-1

Xian Qiu

Simon Fraser University



> dynamic tables
(another example on amortized analysis)

> disjoint sets

® sru X.Qiu



Dynamic Tables

> to allocate space for a table T" using consecutive memories
> number of items to be stored in T is dynamic

> load factor a(T') = Z:oum

if Tis full, i.e. a(T) =1 (or close to one), we expand it:
> allocate a larger table 7"

> copy T to T and free T

if a(T) is small, we contract it analogously

® sru X.Qiu



Table Expansion

TABLE-INSERT(T, x)

1 if T.size == 0 then
2 allocate T'.table with 1 slot;
3 T.size = 1;

4 if T.num == T'.size then

allocate new-table with 2 - T'.size slots;
insert all items in T.table into new-table;
free T'.table;

T'.table = new-table;

T.size = 2 - T'.size;

© ®©® N o o«

0 insert = into T.table;
11 T.num = T.num + 1;

—

worst-case running time O(n)

® sFU X.Qiu



Aggregate Analysis

¢; = cost of the ith TABLE-INSERT = 7

i, if i — 1 is an exact power of 2
¢ = .
1, otherwise

[log 7
Zcz<n+ Z 2 <n4+2n=3n =¢=3=0()
=1 7=0
® SFU X.Qiu



Accounting Method

charge 3 dollars for each insertion

> direct insertion of an element costs 1 dollar
> 1 credit for moving itself to new table

> 1 credit for moving another item that has already been moved
once when the table expands

0 0 2 2
EEAEIED

el [T ]

® sru X.Qiu



Potential Method

O(T)=2-T.num — T'size € {0,1,...,T.num}
if the 7th TABLE-INSERT does not trigger an expansion

Gi=c¢i+ 0 — D
=14 (2-num; — size;) — (2 - num;_1 — size;_1)
=1+ (2-num; —size;) — [2(num; — 1) — size;] =3
else, size; = 2 - size;_1 and size;_1 = num;_1 = num; — 1
¢ =num; + (2 - num; — size;) — (2 - num;_q — size;_1)
=1—size;_1 + (2-num; — 2 -size;_1) — [2(num; — 1) — size;_1]
=3

® SFU X.Qiu



Table Expansion and Contraction

TaBLe-DELETE: halve the table size when o(T") < why not 37

e

consider a sequence of n TABLE-INSERT, TABLE-DELETE operations

intuition: ¢ = O(1) for insertion and deletion, so is their mixture
potential method

o(T) = 2-T.num — T'size, if o(T) >
B 3 - T.size — T.num,  if o(T) <

N N[

> 07

® sru X.Qiu



Disjoint Set Operations

to maintain a collection of disjoint dynamic sets

> Make-Ser(x) creates a new set {z}
> UnioN(z, y) unites the dynamic sets that contain z,y

> Finp-Ser(z) returns a pointer to the representative of the
(unique) set containing =

straightforward idea: linked-list representation for dynamic set

applications: connected components, minimum spanning trees etc.

® sru X.Qiu



Connected Components

a—b) o @
G’vﬂﬂ

CONNECTED-COMPONENTS(G)
1 for v € V(G) do
2 | MAKE-SET(v);
3 for each edge (u,v) € E(G) do
4 if FIND-SET(u) # FIND-SET(v) then
| UN1ON(u,v);

running time
> n times of MAKE-SET
> O(m) times of UNION, FIND-SET

® sru X.Qiu



[
.2
)
T
4+
c
Q
0
(V)
—
o
Q
o
)
0
I
N o)
(]
X
B
—

FIND-SET(b)?

UNION(b, d)?

X.Qiv (IS

® sru



> given n objects x1,..., T,

> execute n times Make-Set , followed by n — 1 times Union

> # operations m = 2n — 1, in which n operations are MAKE-SET
> average running time for each operation?

operation # objects updated
MAKE-SET(z1) 1
MAKE-SET () 1
UNION(z2, 1) 1
UNION(23, 22) 2
UNION(Zn, Tn—1) n—1

> total running time = n + Y. 'i = O(n?)
I> amortize running time per operation is ©(n)

® sru X.Qiu



Weight-union Heuristic

> always update the shorter list for Union
> set a length attribute of each set and maintain it

> consider m operations (MAkEe-SET, UNION, FIND-SET), in which
n operations are MAKE-SET

Theorem

The total running time of the m operations is O(m + nlogn).

> each operation costs O(logn)

> O(m) times Make-SET, FIND-SET take O(m)

> at most n — 1 Union operations, the time for updating length
is O(n)

> to show: at most O(logn) updates for each element

® SFU X.Qiu



Proof of the Theorem

|Sa| > 2d

|Sl‘:d T €5 T

T3 > S, 1<i<k—1

k <log% <logn

® sru X.Qiu



	Outline
	Dynamic Tables
	Disjoint Set Operations
	Linked-list Representation

