
M M∗ M△M∗

Figure 11: Illustration of the existence of anM-augmenting path.

7. Matchings

7.1 Introduction

Recall that amatching Min an undirected graphG= (V,E) is a subset of edges satisfying
that no two edges share a common endpoint. More formally,M ⊆ E is a matching if for
every two distinct edges(u,v),(x,y) ∈M we have{u,v}∩{x,y} = /0. Every nodeu∈V
that is incident to a matching edge is said to bematched; all other nodes are said to be
free. A matchingM is perfectif every nodeu∈V is matched byM.

We consider the following optimization problem:

Maximum Matching Problem:

Given: An undirected graphG= (V,E).
Goal: Compute a matchingM ⊆ E of G of maximum size.

Note that if the underlying graph is bipartite, then we can solve the maximum matching
problem by a maximum flow computation.

Given two setsS,T ⊆ E, let S△ T denote thesymmetric differenceof S and T, i.e.,
S△T = (S\T)∪ (T \S).

7.2 Augmenting Paths

Given a matchingM, a pathP is calledM-alternating(or simplyalternating) if the edges
of P are alternately inM and not inM. If the first and last node of anM-alternating
pathP are free, thenP is called anM-augmenting(or augmenting) path. Note that an
augmenting path must have an odd number of edges. AnM-augmenting pathP can be
used to increase the size ofM: Simply make every non-matching edge onP a matching
edge and vice versa. We also say that weaugment M along P.

51

r

u v

Figure 12: Illustration of an alternating tree. The nodes inX andY are indicated in white
and gray, respectively. Note that there is an augmenting path from r to v.

Theorem 7.1. A matching M in a graph G= (V,E) is maximum if and only if there is no
M-augmenting path.

Proof. SupposeM is maximum and there is anM-augmenting pathP. Then augmenting
M alongP gives a new matchingM′ = M△P of size|M|+1, which is a contradiction.

Suppose thatM is not maximum. LetM∗ be a maximum matching. Consider the symmet-
ric differenceM△M∗. BecauseM andM∗ are matchings, the subgraphG′= (V,M△M∗)
consists of isolated nodes and node-disjoint paths and cycles. The edges of every such
path or cycle belong alternately toM andM∗. Each cycle therefore has an even number
of edges. Because|M∗|> |M| there must exist one pathP that has more edges ofM∗ than
of M. P is anM-augmenting path; see Figure11for an illustration.

7.3 Bipartite Graphs

The above theorem gives an idea how to compute a maximum matching: Start with the
empty matchingM = /0. Find anM-augmenting pathP and augmentM alongP. Repeat
this procedure until noM-augmenting path exists andM is maximum.

A natural approach to search for augmenting paths is to iteratively build analternating
tree. SupposeM is a matching andr is a free node. We inductively construct a treeT
rooted atr as follows. We partition the node set ofT into two setsX andY: For every
nodeu∈X, there is an even-length alternating path fromr to u in T; for every nodeu∈Y,
there is an odd-length alternating path fromr to u in T. We start withX = {r} andY = /0
and then iteratively extendT using the following operation:

EXTEND TREE USING(u,v):
(Precondition:(u,v) ∈ E, u∈ X, v /∈ X∪Y and(v,w) ∈M)
Add edge(u,v) to T, v to Y, edge(v,w) to T andw to X

This way we obtain a layered tree rooted atr (starting with layer 0); see Figure12 for
an illustration. All nodes inX are on even layers and all nodes inY are on odd layers.
Moreover, every node in layer 2i−1 (i ≥ 1) is matched to a node in layer 2i. In particular,
|X|= |Y|+1.

52

Input : undirected bipartite graphG= (V,E).
Output : maximum matchingM.

1 Initialize: M = /0
2 foreach r ∈V do
3 if r is matchedthen continue
4 else
5 X = {r}, Y = /0, T = /0
6 while there exists an edge(u,v) ∈ E with u∈ X and v/∈ X∪Y do
7 if v is freethen AUGMENT MATCHING USING (u,v)
8 elseEXTEND TREE USING(u,v)
9 end

10 end
11 end
12 return M

Algorithm 12: Augmenting path algorithm.

Suppose that during the extension of the alternating treeT we encounter an edge(u,v)∈E
with u∈X andv /∈ X∪Y being a free node. We have then found an augmenting path from
r to v; see Figure12.

AUGMENT MATCHING USING (u,v)
(Precondition:(u,v) ∈ E, u∈ X, v /∈ X∪Y free)
AugmentM along the concatenation of ther,u-path inT with edge(u,v)

These two operations form the basis of the augmeting path algorithm given in Algo-
rithm 12.

The correctness of the algorithm depends on whether alternating trees truly capture all
augmenting paths. Clearly, whenever the algorithm finds an augmenting path starting at
r, this is an augmenting path. But can we conclude that there isno augmenting path if
the algorithm does not find one? As it turns out, the algorithmworks correctly if the
underlying graph satisfies theunique label property: A graph satisfies theunique label
propertywith respect to a given matchingM and a root noder if the above tree building
procedure uniquely assigns every nodeu∈V(T) to one of the setsX andY, irrespective
of the order in which the nodes are examined.

Lemma 7.1. Suppose a graph satisfies the unique label property. If thereexists an M-
augmenting path, then the augmenting path algorithm finds it.

Proof. Let P = 〈r, . . . ,u,v〉 be an augmenting path with respect toM. Because of the
unique label property, the algorithm always ends up with adding nodeu to X and thus
discovers an augmenting path via edge(u,v).

Using the above characterization, we can show that the augmenting path algorithm given
in Algorithm 12 is correct for bipartite graphs: Recall that in a bipartite graph, the node
setV is partitioned into two setsV0 andV1. Every node that is part ofV(T) and belongs

53

r x b

p u

q v

z

(a)

r x b

z

(b)

Figure 13: Illustration of a blossom shrinking. (a) The odd cycle B = 〈b, p,u,v,q,b〉
constitutes a blossom with baseb and stem〈r,x,b〉. Note that there is an augmenting
path fromz to r via edge(u,v). (b) The resulting graph after shrinking blossomB into a
super-nodeb.

to the setVi with r ∈ Vi is added toX; those that belong toV1−i are added toY. Thus
bipartite graphs satisfy the unique label property.

Theorem 7.2. The augmenting path algorithm computes a maximum matching in bipar-
tite graphs in time O(nm).

Proof. The correctness of the algorithm follows from the discussion above. Note that each
iteration can be implemented to run in timeO(n+m) and there are at mostn iterations.

7.4 General Graphs

It is not hard to see that graphs do in general not satisfy the unique label property. Consider
an odd cycle consisting of three edges(r,u),(u,v),(v, r) and suppose that(u,v) ∈M and
r is free. Then the algorithm addsu to Y if it considers edge(r,u) first, while it addsu
to X if it considers edge(r,v) first. Odd cycles are precisely the objects that cause this
dilemma (and which are not present in bipartite graphs).

A deep insight that was first gained by Edmonds in 1965 is that one can “shrink” such odd
cycles. Suppose during the construction of the alternatingtree, the algorithm encounters
an edge(u,v) with u,v∈ X; see Figure13(a). Letb be the lowest common ancestor of
u andv in T. Note thatb∈ X. Consider the cycleB that follows the uniqueb,u-path in
T, then edge(u,v) and then the uniquev,b-path inT. B is an odd length cycle, which
is also called ablossom. The nodeb is called thebaseof B. The even length path from
b to the root noder is called thestemof B; if r = b then we say that the stem ofB is
empty. Suppose we shrink the cycleB to a super-node, which we identify withb; see
Figure13(b). Note that the super-nodeb belongs toX after shrinking.

SHRINK BLOSSOM USING(u,v):
(Precondition:(u,v) ∈ E andu,v∈ X)
Let b be the lowest common ancestor ofu andv in T.
Shrink the blossomB= 〈b, . . . ,u,v, . . . ,b〉 to a super-nodeb.

54

	Matchings
	Introduction
	Augmenting Paths
	Bipartite Graphs
	General Graphs

