M M* M A M*

Figure 11: lllustration of the existence of draugmenting path.

7. Matchings

7.1 Introduction

Recall that anatching Min an undirected grapB = (V, E) is a subset of edges satisfying
that no two edges share a common endpoint. More formdll¢ E is a matching if for
every two distinct edge@u, v), (x,y) € M we have{u,v} N {x,y} = 0. Every nodai € V
that is incident to a matching edge is said torbatched all other nodes are said to be
free. A matchingM is perfectif every nodeu € V is matched by.

We consider the following optimization problem:

Maximum Matching Problem

Given: An undirected grapB = (V,E).
Goal: Compute a matching C E of G of maximum size.

Note that if the underlying graph is bipartite, then we calwesthe maximum matching
problem by a maximum flow computation.

Given two setsS T C E, let SA T denote thesymmetric differencef S andT, i.e.,
SAT=(S\T)U(T\9).

7.2 Augmenting Paths

Given a matchingM, a pathP is calledM-alternating(or simplyalternating if the edges
of P are alternately irM and not inM. If the first and last node of all-alternating
pathP are free, therP is called anM-augmentingor augmentiny path. Note that an
augmenting path must have an odd number of edgesMAgugmenting patf® can be
used to increase the size . Simply make every non-matching edge B matching
edge and vice versa. We also say thataugment M along P

51

O
Q
O

Figure 12: lllustration of an alternating tree. The nodeX iandY are indicated in white
and gray, respectively. Note that there is an augmentirtgfpatnr to v.

Theorem 7.1. A matching M in a graph G= (V,E) is maximum if and only if there is no
M-augmenting path.

Proof. SupposéM is maximum and there is dfi-augmenting patP. Then augmenting
M alongP gives a new matchinyl’ = M A P of size|M| + 1, which is a contradiction.

Suppose thatl is not maximum. LeM* be a maximum matching. Consider the symmet-
ric differenceM A M*. Becausé/ andM* are matchings, the subgra@h= (V,M A M*)
consists of isolated nodes and node-disjoint paths anésydhe edges of every such
path or cycle belong alternately & andM*. Each cycle therefore has an even number
of edges. Becaug®*| > |M| there must exist one pakhthat has more edges bf* than

of M. P is anM-augmenting path; see Figuté for an illustration. O

7.3 Bipartite Graphs

The above theorem gives an idea how to compute a maximum imgtcBtart with the
empty matchingVl = 0. Find anM-augmenting patl? and augmenil alongP. Repeat
this procedure until né-augmenting path exists amlis maximum.

A natural approach to search for augmenting paths is totifeip build analternating
tree SupposeM is a matching and is a free node. We inductively construct a tiee
rooted atr as follows. We partition the node set dfinto two setsX andY: For every
nodeu € X, there is an even-length alternating path frotauin T; for every nodei €'Y,
there is an odd-length alternating path froto u in T. We start withX = {r} andY =0
and then iteratively extentl using the following operation:

EXTEND TREE USING(U,V):
(Precondition(u,v) € E,ue X,v¢ XUY and(v,w) € M)
Add edge(u,v) to T, vtoY, edge(v,w) to T andw to X

This way we obtain a layered tree rooted gstarting with layer 0); see Figurg2 for
an illustration. All nodes ifX are on even layers and all nodesYirare on odd layers.
Moreover, every node in layei 2 1 (i > 1) is matched to a node in layei. 2n particular,
IX|=1]Y|+1.

52

Input: undirected bipartite grap8 = (V,E).
Output: maximum matchingJ.

1 Initialize: M =0

2 foreachr €V do

3 if r is matchedhen continue
4 else

5 X={r},Y=0T=0
6 while there exists an edge,v) € E with ue X and v¢ X UY do
7 if v is freethen AUGMENT MATCHING USING (u,V)

8 elseEXTEND TREE USING(U,V)

9 end

10 end

11 end

12 return M

Algorithm 12: Augmenting path algorithm.

Suppose that during the extension of the alternatingftree encounter an edda,v) € E
with u € X andv ¢ XUY being a free node. We have then found an augmenting path from
r tov; see Figure 2.

AUGMENT MATCHING USING (U,V)
(Precondition(u,v) € E,ue X,v¢ XUY free)
AugmentM along the concatenation of thes-path inT with edge(u, v)

These two operations form the basis of the augmeting patbritiigh given in Algo-
rithm 12.

The correctness of the algorithm depends on whether attegniwees truly capture all
augmenting paths. Clearly, whenever the algorithm findsugmenting path starting at
r, this is an augmenting path. But can we conclude that theme Bugmenting path if
the algorithm does not find one? As it turns out, the algorithonks correctly if the
underlying graph satisfies thenique label property A graph satisfies thenique label
propertywith respect to a given matchirg and a root node if the above tree building
procedure uniquely assigns every nade V(T) to one of the setX andY, irrespective
of the order in which the nodes are examined.

Lemma 7.1. Suppose a graph satisfies the unique label property. If thrigts an M-
augmenting path, then the augmenting path algorithm finds it

Proof. Let P = {(r,...,u,v) be an augmenting path with respectNb Because of the
unique label property, the algorithm always ends up withirgidhodeu to X and thus
discovers an augmenting path via edgev). O

Using the above characterization, we can show that the aotimyepath algorithm given
in Algorithm 12 is correct for bipartite graphs: Recall that in a bipartitepgh, the node
setV is partitioned into two setgy andV;. Every node that is part & (T) and belongs

53

o
O— =0 O——(>)
0

(@) (b)

Figure 13: lllustration of a blossom shrinking. (a) The ogdle B = (b, p,u,v,q,b)
constitutes a blossom with babeand stem(r,x,b). Note that there is an augmenting
path fromz to r via edge(u,v). (b) The resulting graph after shrinking bloss@&nnto a
super-nodé.

to the setv; with r € V; is added taX; those that belong td;_; are added t¢&y. Thus
bipartite graphs satisfy the unique label property.

Theorem 7.2. The augmenting path algorithm computes a maximum matchibigpar-
tite graphs in time @nm).

Proof. The correctness of the algorithm follows from the discussioove. Note that each
iteration can be implemented to run in tif®&n+ m) and there are at mostiterations.
O

7.4 General Graphs

Itis not hard to see that graphs do in general not satisfyrigie label property. Consider
an odd cycle consisting of three eddea), (u,v), (v,r) and suppose thdt,v) € M and

r is free. Then the algorithm addsto Y if it considers edgér,u) first, while it addsu

to X if it considers edgér,v) first. Odd cycles are precisely the objects that cause this
dilemma (and which are not present in bipartite graphs).

A deep insight that was first gained by Edmonds in 1965 is thaian “shrink” such odd
cycles. Suppose during the construction of the alternatewy the algorithm encounters
an edgeg(u,v) with u,v € X; see Figurel3(a). Letb be the lowest common ancestor of
uandvin T. Note thatb € X. Consider the cycl® that follows the uniqué, u-path in
T, then edg€u,v) and then the uniqueb-path inT. B is an odd length cycle, which
is also called &lossom The nodeb is called thebaseof B. The even length path from
b to the root node is called thestemof B; if r = b then we say that the stem Bfis
empty. Suppose we shrink the cyd@eto a super-node, which we identify with) see
Figure13(b). Note that the super-notebelongs toX after shrinking.

SHRINK BLOSSOM USING (U, V):
(Precondition{u,v) € E andu,v € X)
Letb be the lowest common ancestonoandvin T.
Shrink the blossorB = (b,...,u,V,...,b) to a super-nodb.

54

	Matchings
	Introduction
	Augmenting Paths
	Bipartite Graphs
	General Graphs

