Note: This set of problems is for practice. You do not need to hand in your solutions.

1. Consider the following matching problems:

Maximum Weighted Matching (MWM): Given an undirected graph G = (V, E) and weight function $w : E \to \mathbb{R}$, find a matching M of maximum total weight.

Minimum Weight Perfect Matching (MWPM): Given an undirected graph G = (V, E) and weight function $w : E \to \mathbb{R}$, find a *perfect matching* M of minimum total weight.

- 1. For MWPM, explain that we can assume w.l.o.g. that a perfect matching of G always exist and $w_e \ge 0$ for all $e \in E$.
- 2. Consider MWPM on G and a subgraph $H \subseteq G$. Let M_G, M_H be the optimal solutions of G and H respectively. Let $w(M_G), w(M_H)$ be the total weight of M_G and M_H respectively. As H is a subgraph of G, do we have $w(M_H) \leq w(M_G)$? (Prove the claim if "yes", else give a counter example.)
- 3. Assume we have an algorithm \mathbb{A}_{\min} for MWPM. Show that we can solve MWM by applying \mathbb{A}_{\min} (*i.e.*, show that MWM can be transformed into MWPM).

2. A sorting instance I is given by an array $A[1..n] \in \mathbb{N}$. Present a sorting algorithm which runs in O(|I|), where |I| is the encoding length of I (using binary encoding).

3. Consider the decision version VC_k of **vertex cover**: Given an undirected graph G = (V, E) and an integer k, does exist a vertex cover $C \subseteq V$ of cardinality $|C| \leq k$? (A vertex cover C is a set of vertices such that every edge $e \in E$ is incident with an vertex of C.) Show that if there exists a polynomial time algorithm A_K that tells whether VC_k is yes or no, then there exists a polynomial time algorithm for solving vertex cover $(i.e., \text{ present an algorithm which returns a minimum "vertex cover", not only the minimum cardinality!).$

4. Consider the linear programming problem: Given $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$, find a solution $x \in \mathbb{R}^n$ with $Ax \leq b$ such that $c^T x$ is minimized (assuming that the optimal objective value is not $-\infty$). The problem can also be described as follows:

$$\min c^T x$$
(LP)
subject to $Ax \le b$,
 $x \ge 0$.

For any $x \in \mathbb{R}^n$ and $x \ge 0$, if $Ax \le b$, we call x is a feasible solution of (LP). The **dual problem** of (LP) is defined as below:

$$\max b^T y$$
(DP)
subject to $A^T y \ge c$,
 $y \ge 0$.

Note that $y \in \mathbb{R}^m$.

Theorem 1 (Duality Theorem). Consider the above linear program (LP) and its dual program (DP). It holds that

- 1. $b^T y \leq c^T x$ for all feasible solutions x of (LP), y of (DP).
- 2. The optimal objective values of (LP) and (DP) are equal.
- 1. Write down the corresponding decision problem of (LP) and the associated language L.
- 2. Write down the complement \overline{L} .
- 3. Prove that $L \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$, *i.e.*, show that $L, \overline{L} \in \mathcal{NP}$. Proving $\overline{L} \in \mathcal{NP}$ is non-trivial. You may need to use the duality theorem.
- 5. Prove the following claims:
- (1) $\mathcal{P} = \operatorname{co-}\mathcal{P};$
- (2) $\mathcal{P} \subseteq \mathcal{NP} \cap \mathrm{co} \mathcal{NP};$
- (3) If $\mathcal{P} = \mathcal{NP}$, then $\mathcal{NP} = \text{co-}\mathcal{NP}$. (Thus, to prove $\mathcal{P} \neq \mathcal{NP}$, it suffices to show $\mathcal{NP} \neq \text{co-}\mathcal{NP}$.)

6. Consider the *longest path problem*: Given an undirected graph G = (V, E) and a distance function $l : E \to \mathbb{R}^+$. We are also given a source node $s \in V$ and a sink node $t \in V$. The question is to find a simple s-t path P such that the total length of P is maximized.

(1) write down the decision version of the longest path problem.

(2) prove that the problem is NP-complete.

7. Consider the KNAPSACK problem: Given a knapsack of capacity W, n items of values v_i and weights w_i for i = 1, ..., n. The goal is to pack a set S of items into the knapsack such that the total value of S is maximized. We require that the total weight of S cannot exceed W. Show that KNAPSACK is NP-hard by reduction from PARTITION (*i.e.*, show the decision version is NP-complete).

8. Prove that SUBSET-SUM is NP-complete by reduction from PARTITION.

9. You are given a directed graph G = (V, E) with edge wights w_e on its edges $e \in E$. The weights can be negative or positive. The *zero-weight-cycle problem* is to decide if there is a simple cycle in G so that the sum of the edge weights on this cycle is exactly 0. Prove that this problem is NP-complete.

Hint: You may prove by reduction from SUBSET-SUM.

10. Consider the greedy algorithm for KNAPSACK: Order items w.r.t. non-increasing value densities, *i.e.*,

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \dots \frac{v_n}{w_n}.$$

Pack items to the knapsack in this order until no items can be added into the knapsack.

- 1. Show that the greedy algorithm can be arbitrarily bad.
- 2. Now consider another algorithm ALG: First run the greedy algorithm and let g be the total value of the greedy solution; Second, return the corresponding solution of max $\{v_{\max}, g\}$, where $v_{\max} = \max_{i:w_i \leq W} v_i$. Show that ALG is a 2-approximation algorithm.