
Homework 7 Released on November 25, 2016

Note: This set of problems is for practice. You do not need to hand in your solutions.

1. Consider the following matching problems:

Maximum Weighted Matching (MWM): Given an undirected graph G = (V,E) and
weight function w : E → R, find a matching M of maximum total weight.

Minimum Weight Perfect Matching (MWPM): Given an undirected graph G =
(V,E) and weight function w : E → R, find a perfect matching M of minimum total weight.

1. For MWPM, explain that we can assume w.l.o.g. that a perfect matching of G always
exist and we ≥ 0 for all e ∈ E.

2. Consider MWPM on G and a subgraph H ⊆ G. Let MG,MH be the optimal solutions of
G and H respectively. Let w(MG), w(MH) be the total weight of MG and MH respectively.
As H is a subgraph of G, do we have w(MH) ≤ w(MG)? (Prove the claim if “yes”, else
give a counter example.)

3. Assume we have an algorithm Amin for MWPM. Show that we can solve MWM by applying
Amin (i.e., show that MWM can be transformed into MWPM).

2. A sorting instance I is given by an array A[1..n] ∈ N. Present a sorting algorithm which
runs in O(|I|), where |I| is the encoding length of I (using binary encoding).

3. Consider the decision version VCk of vertex cover: Given an undirected graph G = (V,E)
and an integer k, does exist a vertex cover C ⊆ V of cardinality |C| ≤ k? (A vertex cover C is
a set of vertices such that every edge e ∈ E is incident with an vertex of C.) Show that if there
exists a polynomial time algorithm Ak that tells whether VCk is yes or no, then there exists a
polynomial time algorithm for solving vertex cover (i.e., present an algorithm which returns a
minimum “vertex cover”, not only the minimum cardinality!).

4. Consider the linear programming problem: Given A ∈ Rm×n, c ∈ Rn and b ∈ Rm,
find a solution x ∈ Rn with Ax ≤ b such that cTx is minimized (assuming that the optimal
objective value is not −∞). The problem can also be described as follows:

min cTx (LP)

subject to Ax ≤ b,

x ≥ 0.

For any x ∈ Rn and x ≥ 0, if Ax ≤ b, we call x is a feasible solution of (LP). The dual
problem of (LP) is defined as below:

max bTy (DP)

subject to ATy ≥ c,

y ≥ 0.

Note that y ∈ Rm.

1

Theorem 1 (Duality Theorem). Consider the above linear program (LP) and its dual program
(DP). It holds that

1. bTy ≤ cTx for all feasible solutions x of (LP), y of (DP).

2. The optimal objective values of (LP) and (DP) are equal.

1. Write down the corresponding decision problem of (LP) and the associated language L.

2. Write down the complement L̄.

3. Prove that L ∈ NP∩co-NP , i.e., show that L, L̄ ∈ NP . Proving L̄ ∈ NP is non-trivial.
You may need to use the duality theorem.

5. Prove the following claims:

(1) P = co-P ;

(2) P ⊆ NP ∩ co−NP ;

(3) If P = NP , then NP = co-NP . (Thus, to prove P 6= NP , it suffices to show NP 6=
co−NP .)

6. Consider the longest path problem: Given an undirected graph G = (V,E) and a distance
function l : E → R+. We are also given a source node s ∈ V and a sink node t ∈ V . The
question is to find a simple s-t path P such that the total length of P is maximized.

(1) write down the decision version of the longest path problem.

(2) prove that the problem is NP-complete.

7. Consider the Knapsack problem: Given a knapsack of capacity W , n items of values vi
and weights wi for i = 1, . . . , n. The goal is to pack a set S of items into the knapsack such
that the total value of S is maximized. We require that the total weight of S cannot exceed
W . Show that Knapsack is NP-hard by reduction from Partition (i.e., show the decision
version is NP-complete).

8. Prove that Subset-Sum is NP-complete by reduction from Partition.

9. You are given a directed graph G = (V,E) with edge wights we on its edges e ∈ E. The
weights can be negative or positive. The zero-weight-cycle problem is to decide if there is a
simple cycle in G so that the sum of the edge weights on this cycle is exactly 0. Prove that this
problem is NP-complete.
Hint: You may prove by reduction from Subset-Sum.

10. Consider the greedy algorithm for Knapsack: Order items w.r.t. non-increasing value
densities, i.e.,

v1
w1

≥ v2
w2

≥ . . .
vn
wn

.

Pack items to the knapsack in this order until no items can be added into the knapsack.

2

1. Show that the greedy algorithm can be arbitrarily bad.

2. Now consider another algorithm ALG: First run the greedy algorithm and let g be the total
value of the greedy solution; Second, return the corresponding solution of max {vmax, g},
where vmax = maxi:wi≤W vi. Show that ALG is a 2-approximation algorithm.

3

