
Homework 3 Released on October 5, 2016

1. Consider the following algorithm:

Permute(A)

n = A.length;
for i = 1 to n do

swap A[i] with A[Random(1, n)];

Does this code produce a uniform random permutation? Why or why not?

2. Prove that in the array P in procedure Permute-By-Soring, the probability that all
elements are unique is at least 1 − 1/n.

3. Write a non-recursive code for Max-Heapify(A, i).

4. Argue the correctness of Heapsort using the following loop invariant: At the start of
each iteration of the for loop of lines 2-5, the subarrary A[1..i] is a max-heap containing the i
smallest elements of A[1..n], and the subarrary A[i + 1..n] contains the n − i largest elements
of A[1..n], sorted.

5. Give an O(n log k) algorithm (pseudocode) to merge k sorted lists into one sorted list,
where n is the total number of elements in all the input lists. (Explain the basic idea before
writing your code.)

Hint: You may use min-heap and you do not need to write the methods for min-heap.

6. In running time analysis of Quicksort using randomized partition, we assumed that all
elements have distinct values. What’s the problem without this assumption?

7. We modify quicksort as follows: Upon calling quicksort on a subarrray with fewer than k
elements, let it simply return without sorting the subarrary. After the top-level call to quicksort
returns, run insertion sort (cf. Section 2.1) on the entire array to finish the sorting process.
Assume that all elements have distinct values.

(1) Show that this sorting algorithm runs in O(nk + n log(n/k)) expected time.

Hint: Hn =
∑n

i=1
1
i

= lnn + O(1).

(2) How should we pick k, both in theory and in practice?

1


