Assignment 5: Collaborative Filtering

Arash Vahdat

Fall 2015

Readings You are highly recommended to check the following readings before/while doing this assignment:
* Slope One Algorithm: https://en.wikipedia.org/wiki/Slope_One.

* Alternating Least Squares (ALS) Method: Chapter 3, “Advanced Analytics with Spark™, Ryza, Laser-
son, Owen and Wilss, O’Reilly Media, 2015.

* “A Comparative Study of Collaborative Filtering Algorithms”, Joonseok Lee, Mingxuan Sun, and Guy
Lebanon, arXiv preprint 1205.3193 (2012).

* “A Survey of Collaborative Filtering Techniques”, Xiaoyuan Su and Taghi M. Khoshgoftaar, Advances
in artificial intelligence, Vol 2009.

* “Improving regularized singular value decomposition for collaborative filtering”, Arkadiusz Paterek,
Proceedings of KDD cup and workshop. Vol. 2007. 2007.

Provided Code and Data In this assignment, we will use the MovieLens dataset which contains 100K
movie ratings available at:

/cs/vml2/avahdat/CMPT733_Data_Sets/Assignment5

1 Introduction

Assume you are running an online retail store. Being able to predict your users interests can significantly
boost your sales by providing personalized suggestions based on their profiles. Recommendation systems are
designed to address this problem.

Generally, existing algorithms for recommendation systems can be divided into two main categories: Content-
based filtering algorithms that use products’ or users’ characteristics to recommend products to users. And
Collaborative filtering algorithms that use user’s past behavior, e.g. items bought, rated, or visited. Collabora-
tive filtering algorithms can be further sub-categorized in two groups based on the data they rely on. The first
group consists of collaborative filtering systems based on implicit feedback data. This type of data relies on
the assumption that users only visit or brows through products of their interest. The second group refers to sys-
tems using explicit feedback data. In this type of data, users provide their ratings explicitly for known products.

In this assignment, we will examine two collaborative filtering algorithms using explicit feedback data.
First, we will try the Alternating Least Squares method which is a parametric matrix decomposition-based



algorithm. Second, we will implement the Slope One algorithm which is a simple non-parametric model that
uses item-to-item comparisons to infer a user’s rating for a given item.

In order to train and test your models, you are provided with train and test splits extracted from the 100K
movie ratings of the MovieLens dataset. These splits can be found in the directory mentioned above
(MovieLens100K train.txt, MovieLensl00K test.txt). The dataset is organized as follows: “UserID \t
MovieID \t Rating \t Timestamp” where UserIDs range between 1 and 943, MovielDs range between 1 and
1682, and, Ratings are based on a 5-star scale (whole-star ratings only). You can ignore the timestamp data
for this assignment.

2 Alternating Least Squares (ALS) Method

Assume you have access to a movie descriptor which represents a movie using semantically meaningful
measurements. For example, your feature vector could have multiple dimensions. Some feature dimensions
could represent the movie genre (e.g. if it is an action movie or not, if it is a comedy movie or not, and so on).
You could also include other features such as the production date, the cast, the list of directors etc.

Given a movie representation (g;), a collaborative filtering algorithm can be modeled as a regression problem
where the goal is to find a weight vector for each user (p;) which maps the movie features to the user’s ratings
(rij). In our feature vector example, the weight vector represents how much the user likes different movie
genres, actors or directors. During training the model learns a preference weight vector for each user such
that the predicted ratings (p! ¢ ;) are as close as possible to the user’s provided ratings (r;;).

The Alternating Least Squares (ALS) method assumes that there exist a hidden representation for each
movie. It represents all user ratings as a linear combination of movie features where the weights of the
linear combination is user-specific. The goal of the ALS algorithm is to find both movie features and user
preferences alternatively by solving one parameter at a time (remaining parameters being fixed).

Question 1: (5 marks) ALS algorithm can be easily used in Spark. Follow the example in the Spark
documentation' to train a recommendation model using the provided training data.

Two main hyperparameters are used to tune the ALS model. The first parameter is a “rank” variable
which controls the size of a movie representation (item factor vector). The second parameter is a variable
“lambda_" (), which balances the model parameter regularization. Try different values, exponents of two
(2,4,8,32,...,256) for tuning the hyperparameter "rank" and different exponents of 10 (0.01,0.1) for tunning
"lambda". Fix the number of iterations to 20 for each of your experiments. Measure your performance for
each configuration using the Root Mean Squared Error (RMSE) criterion.

Visualize the error versus ranks on the test data while fixing lambda to the best value for each rank. Submit
your plot along with the implemented code used to generate your results. What is the lowest test error
achieved, and what are the rank and lambda_ values for which you have achieved the reported lowest error?

1http://spark.apache.org/docs/l.3.1/mllib—collaborative—filtering.html



How does the error change as the rank increases? How can you explain the irregular patterns observed when
visualizing the error vs rank?

Question 2: (15 marks) Training a recommendation system using the ALS method, will result in two big
matrices, more specifically, two RDDs in Spark. The first matrix will contain a factor vector for each movie,
and the second matrix will contain user preferences or the weight vector.

Paterek, in the paper “improving regularized singular value decomposition for collaborative filtering” pro-
posed a very interesting idea. In the Sec.3.6 of the paper, the author proposes to feed the hidden movie features
trained using ALS-type algorithm to a non-linear regression model (in their case, kernel ridge regression).
Due to the non-linearity of this regression model, there is a chance to train a better recommendation model.

In this question, we are going to reproduce this idea using the following steps:
1. Train an ALS model using fixed hyperparameters selected from the previous question.

2. Extract movie features using model.productFeatures (). This command will return an RDD containing
<movielD, feature> pairs.

3. Collect all features for movies rated by each user in the training data. While considering the corre-
sponding user ratings as target values for each movie feature, train a kernel ridge regression model
for each user. You can use the kernel ridge regression class from the Sklearn package 2. Try different
kernel types (RBF, Polynomial, Sigmoid, etc) as your kernel, and cross validate the kernel parameters
as well as the regularizer coefficient for the regression model.

4. For test, apply the corresponding user-based regression model to the movie feature collected for each
user-movie pair .

5. Evaluate your performance using the RMSE criterion.

Implement this idea and compare your performance to the best model trained in the previous question. Can
you improve your performance using the above-mentioned trick? What kind of kernel did you use for this
question and which values did you set for the kernel parameters?

Note: To perform steps 3 and 4, you will need to combine multiple RDDs?. For this, use Spark’s RDD
operations. Your answer to this question should include how you used RDD operations to implement steps
3 and 4.

3 Slope One

Slope One is a family of non-parametric algorithms proposed for collaborative filtering. It was originally
proposed by Daniel Lemire and Anna Maclachlan®. Slope One is a fairly simple yet powerful algorithm.
Learn about this algorithm by following the instructions seen during the lecture or in the following wiki page

2ht‘cp://sciki‘c— learn.org/stable/modules/kernel_ridge.html

3Familiarize yourself with the main RDD operations: map, reduce, groupByKey, reduceByKey, join, flatMap, mapValues.

4Daniel Lemire, Anna Maclachlan, Slope One Predictors for Online Rating-Based Collaborative Filtering, In SIAM Data Mining
(SDM’05), Newport Beach, California, April 21?23, 2005. available at: http://arxiv.org/pdf/cs/0702144v2.pdf



https://en.wikipedia.org/wiki/Slope_One. Lemire and Maclachlan’s original paper is also a good source
to familiarize yourself with the concepts introduced in this algorithm.

In this section, we are going to implement the weighted Slope One algorithm using the RDD operations

available in Spark. For implementing this algorithm we will need to compute the average deviation of the j**

movie with respect to the i’ movie using the following equation:

1
dev;; = — Z Tuj— Tui (D)
c]vl uelj
where U ; represents the set of all users rating both movies, c;; is the cardinality of this set (c;; = |U;;|)

and r, ; and r, ; are the ratings provided by the user u for the 7 and i"* movie, respectively, in the training data.

At test time, we can predict the rating of the user a for the movie j using:

P Yien (devji+rai)c;i
a7] -
Yienc i

where N represents the set of all movies rated by user u.

(@)

Question 3: (S marks) To solve Eq.2, we need to compute both dev;; and c;; for any pair of movies with
a common rating. Explain how to compute these two quantities using the RDD operations available in Spark.

Question 4: (5 marks) Briefly explain how to predict users movie ratings in the test dataset using Eq.2,
given an RDD containing both dev;; and c;; for each movie pair and another RDD containing the training
user-movie pairs.

Question 5: (10 marks) Implement the Slope One algorithm. Use your analysis from Q.3 to compute
dev;; and c;; on the training data, then, use your analysis from Q.4 to predict ratings for every user-movie
pair in the test dataset. Report your performance on the test dataset using the root mean squared error. Does
your Slope One implementation outperforms the ALS method?

Question 6: (10 marks) The above recommendation system algorithms can be improved in multiple ways.
The following is a short list of candidate approaches:

1. Model fusion: this consists in the aggregation of different models. In our case, we could simply
combine the models learned with Slope One and ALS algorithm by taking a weighted average of their
predictions for the test data.

2. Hybrid approach: In Q.2 you were asked to extract hidden feature vectors for movies. Some datasets
include semantic descriptors that represent genre or casts for a given movie. The hidden movie features
can be concatenated with the semantic features for training the non-linear regression model in Q.2. In
our dataset, we have access to movie genres (provided to you in the data directory). You could try to
concatenate these two feature types before training your kernel ridge regression.

Implement a subset of these approaches. Design experiments to validate your new model on the test dataset.
Report how your performance changes. You are highly encouraged to propose approaches other than the ones
listed above and provide your own analysis on what you think might boost your recommendation system
performance.



4 Submission
Your assignment should be submitted online at https://courses.cs.sfu.ca/. You should submit two files:

1. Report: Create your report in PDF format including your answers for each question.

2. Code: Create an archive file containing all scripts implemented in this assignment. You should design
your scripts such that your results can be easily reproduced. Please include a readme.txt file in your
archive briefly explaining which script was used for each question.



